论文研究-基于词条属性聚类的文本特征选择算法.pdf

所需积分/C币:12 2019-07-22 22:56:40 1.16MB .PDF
收藏 收藏
举报

文本挖掘之前首先要对文本集进行有效的特征选择。传统的特征选择算法在维数约减及文本表征方面效果有限,并且因需要用到文本的类别信息而不适用于无监督的文本聚类任务。针对这种情况,设计一种适用于文本聚类任务的特征选择算法,提出词条属性的概念。首先基于词频、文档频、词位置及词间关联性构建词条特征模型,重点研究了词位置属性及词间关联性属性的权值计算方法,改进了Apriori算法用于词间关联性属性权值计算;然后通过改进的K-means聚类算法对词条特征模型进行多次聚类完成文本特征选择。实验结果表明,与传统特征选择算法相比,该算法在获得较好维数约减率的同时提高了所选特征词的文本表征能力,能有效适用于文本聚类任

...展开详情
试读 5P 论文研究-基于词条属性聚类的文本特征选择算法.pdf
立即下载 低至0.43元/次 身份认证VIP会员低至7折
    抢沙发
    一个资源只可评论一次,评论内容不能少于5个字
    • 至尊王者

      成功上传501个资源即可获取
    关注 私信 TA的资源
    上传资源赚积分,得勋章
    最新推荐
    论文研究-基于词条属性聚类的文本特征选择算法.pdf 12积分/C币 立即下载
    1/5
    论文研究-基于词条属性聚类的文本特征选择算法.pdf第1页
    论文研究-基于词条属性聚类的文本特征选择算法.pdf第2页

    试读已结束,剩余3页未读...

    12积分/C币 立即下载 >