下载 >  开发技术 >  其它 > 论文研究-CABPM:基于模式匹配的聚类算法 .pdf

论文研究-CABPM:基于模式匹配的聚类算法 .pdf 评分:

CABPM:基于模式匹配的聚类算法,方应飞,,本文通过研究一种快速前向模式匹配算法Rete算法,从一个新的角度重新分析设计了聚类算法-基于模式匹配的聚类算法( A Clustering Algori
2019-08-17 上传大小:298KB
分享
收藏 举报
论文研究-gAC:基于GPU的高性能AC算法.pdf

字符串匹配是计算科学中研究最广泛的问题之一,已成为信息检索和生物计算等领域的核心操作。然而受限于CPU的计算能力和存储器访问带宽,传统的串行字符串匹配算法难以进一步提升性能。GPU在计算能力和存储器访问带宽上有很大提升,已经在很多应用上取得了卓越成效。gAC作为一种基于GPU的并行AC算法,针对GPU的SIMT(Single-Instruction Multiple-Thread)以及合并存储器访问的技术特点,采取了减少条件分支、合并访问全局存储器等优化方法,使得在C1060 GPU上的字符串扫描速度达到51 Gb/s,比基于CPU的串行算法提升了28倍。

立即下载
论文研究-基于稀疏图的鲁棒谱聚类算法.pdf

为提高谱聚类算法的鲁棒性,基于稀疏编码在图的构造中提出一种改进L1稀疏表示图模型。将每个样本表示为数据集中其他样本的稀疏线性组合,稀疏图的构造变为一个优化问题。所构造的稀疏图对数据噪声有很好的鲁棒性,同时能够反映数据局部线性结构;采用稀疏矩阵表示,该方法能够大大降低存储量和计算量,因而对于处理较大规模问题有着较好的可伸缩性。人工数据和实际数据上的谱聚类实验验证了该算法的性能。

立即下载
论文研究-精英遗传K-medoids聚类算法.pdf

针对K-medoids算法易陷入局部最优和聚类结果不稳定的问题,提出了一种精英遗传K-medoids聚类算法。该算法使用精英策略来控制遗传操作的整体进化方向;根据种群的平均适应度引入若干随机个体来提高种群多样性,从而在一定程度上减少了遗传算法的早熟现象。为了提高进化效率,该算法设计出一种新的交叉方式;为了保证交叉变异结果的优秀性,该算法引入了一种竞争机制。8个数据集的仿真实验表明,该算法在提高聚类准确率的同时,聚类结果的稳定性也有所提高。

立即下载
论文研究-基于隐含狄利克雷分布的Single-Pass新闻聚类算法 .pdf

基于隐含狄利克雷分布的Single-Pass新闻聚类算法,冯文杰,熊翱,提出一种基于隐含狄利克雷分布的Single-Pass新闻聚类算法。首先对新闻的线索文档进行了LDA主题聚类,将其映射到新闻集合聚类结果上,�

立即下载
论文研究-基于非参数核密度估计的密度峰值聚类算法.pdf

针对密度峰值聚类算法CFSFDP(clustering by fast search and find of density peaks)计算密度时人为判断截断距离和人工截取簇类中心的缺陷,提出了一种基于非参数核密度估计的密度峰值聚类算法。首先,应用非参数核密度估计方法计算数据点的局部密度;其次,根据排序图采用簇中心点自动选择策略确定潜在簇类中心点,将其余数据点归并到相应的簇类中心;最后,依据簇类间的合并准则对邻近相似子簇进行合并,并根据边界密度识别噪声点得到聚类结果。在人工测试数据集和UCI真实数据集上的实验表明,新算法较之原CFSFDP算法,不仅有效避免了人为判断截断距离和截取簇类中心的主

立即下载
论文研究-动态权值混合C-均值模糊核聚类算法.pdf

PCM算法存在聚类重叠的缺陷,PFCM算法同时利用隶属度与典型值把数据样本划分到不同的类中,提高了算法的抗噪能力,但PFCM算法对样本分布不均衡的聚类效果并不十分理想。针对此不足,可以通过Mercer核把原来的数据空间映射到特征空间,并为特征空间的每个向量分配一个动态权值,从而得到特征空间内的目标函数。理论分析和实验结果表明,相对于其他经典模糊聚类算法,新算法具有更好的健壮性和聚类效果。

立即下载
论文研究-基于改进的TLD目标跟踪算法.pdf

针对传统跟踪—学习—检测(tracking-learning-detecting,TLD)目标跟踪算法由于检测模块扫描大量子窗口而导致检测时间过长,并且在跟踪过程中当目标发生严重遮挡、形变时,TLD算法会出现跟踪失败的问题进行了研究,提出改进TLD目标跟踪算法。改进算法在检测模块前加入ViBe模型预估前景目标,极大地缩小了检测区域。追踪模块用SIFT特征匹配算法来代替原算法中的光流法,准确跟踪目标避免发生跟踪漂移,减少了计算的复杂度,提高了算法适应环境的能力。实验表明,改进后的TLD算法运行速度得到提升,并且当目标出现严重遮挡、光照强度剧烈变化时的跟踪精度也得到了很好的改善。

立即下载
论文研究-基于粒计算的多尺度聚类尺度上推算法.pdf

多尺度科学在数据挖掘领域的研究多见于图像和空间数据挖掘,对一般数据的多尺度特性研究较少。传统聚类算法只在单一尺度上进行,无法充分挖掘蕴藏在数据中的知识。引入粒计算思想,进行普适的多尺度聚类方法研究,对数据进行多层次、多角度分析,实现一次挖掘,多次应用。首先,介绍粒计算相关知识;然后,提出多尺度聚类尺度上推算法UAMC(upscaling algorithm of multi-scale clustering),以簇为粒子,簇心为粒子特征进行尺度转换,利用斑块模型得到大尺度知识,避免二次挖掘带来的资源浪费。最后,利用UCI公用数据集和H省全员人口真实数据集对算法性能进行实验验证,结果表明算法在准

立即下载
论文研究-针对多聚类中心大数据集的加速K-means聚类算法.pdf

随着数据量、数据维度呈指数发展以及实际应用中聚类中心个数的增多,传统的K-means聚类算法已经不能满足实际应用中的时间和内存要求。针对该问题提出了一种基于动态类中心调整和Elkan三角判定思想的加速K-means聚类算法。实验结果证明,当数据规模达到10万条,聚类个数达到20个以上时,本算法相比Elkan算法具有更快的收敛速度和更低的内存开销。

立即下载
论文研究-基于改进SimRank的产品特征聚类研究.pdf

针对在线用户评论中产品特征的提取和聚类问题进行了研究,提出一种改进的SimRank算法。将情感词—特征对放入二分网中,在二分网中使用改进后的SimRank算法计算特征词之间的相似度;再通过谱聚类算法对特征相似度进行聚类,提取网络产品的特征集合。以某电脑评论为例,从中提取情感词—特征对进行研究。实验结果显示,改进后的算法准确率更高。改进后的特征相似度检测方法可以作为检测特征相似度的有效方法,实验采用在线产品的评论语料。实验结果表明,使用改进后的SimRank相似度对特征词进行聚类提取出特征更加准确。

立即下载
论文研究-基于判别分析的半监督聚类方法.pdf

与无监督聚类相比,半监督聚类是利用一部分先验信息来更好地挖掘和理解数据的内在结构,并紧密遵从用户的偏好。现有的典型半监督聚类算法仅仅适合于低维数据,文中提出一种新颖的基于判别分析的半监督聚类算法来解决高维数据聚类问题。新算法首先使用主成分分析来投影高维数据,进一步在投影空间中,使用基于球形K均值聚类算法对数据聚类;然后利用聚类结果,使用线性判别分析降维输入空间数据;最后在投影空间中对数据再次聚类。在一组真实数据集上的实验表明,所提出的算法不仅可以有效地处理高维数据,还提高了聚类性能。

立即下载
论文研究-一种基于相容关系的聚类算法.pdf

聚类分析是数据挖掘中一个重要研究内容。传统的聚类算法可划分为硬聚类和模糊聚类两大类,提出一种基于对象集上的相容关系的聚类算法,该算法通过极大相容簇来对数据对象集进行分类,使得同一对象可以属于不同的簇,而每个簇又有自己独有的成员对象,从而得到既不同于硬聚类也不同于模糊聚类的聚类效果。实验进一步表明了该算法的聚类的合理性。

立即下载
论文研究-一种基于粒子群的聚类算法.pdf

针对K-中心点算法对初始化敏感和容易陷入局部极值的缺点,提出一种基于粒子群算法和密度初始化改进的K-中心点聚类算法。该算法初始化时选择距离较远的k个候选范围作为k个聚类中心的选择范围,即粒子的初始值都在该k个范围内。通过粒子群算法优化聚类中心,以解决K-中心点算法因为聚类中心迭代计算较为复杂而导致的时间复杂度较高的问题。实验结果表明,该算法具有较高的正确率,较小的时间复杂度,综合性能更加稳定。

立即下载
论文研究-一种基于变分贝叶斯的半监督双聚类算法.pdf

为了进一步提高双聚类结果的性能,提出了一种基于变分贝叶斯的半监督双聚类算法。首先,在双聚类过程中引入了行和列的辅助信息,并提出了相应的联合分布概率模型;然后基于变分贝叶斯学习方法对联合概率分布中的参数进行估计;最后,通过合成数据集和真实的基因表达式数据集对提出的算法性能进行评估。实验表明,提出的算法在进行双聚类分析时,其归一化互信息量明显优于相关的双聚类算法。

立即下载
论文研究-统计数据轨迹模式的聚类方法研究.pdf

统计数据轨迹一般具有重视变化趋势、数据噪声较大、模式分布不同等特点, 直接使用传统的聚类分析方法难有很好的效果。对此在K-means算法的基础上, 分别采用了归一化处理、平滑处理以及关键峰匹配等方法处理上述三个问题, 设计了一种解决系统使用轨迹模式分析问题的改进聚类方法。通过使用仿真数据与实际数据进行测试分析, 在仿真数据上改进算法显著降低了聚类的错误率。在实际数据上, 改进算法得出的聚类结果优于K-means算法, 由此证明了改进方法比传统K-means聚类算法在该问题上效果更好。

立即下载
论文研究-基于蚁群算法的动态模糊聚类分析 .pdf

基于蚁群算法的动态模糊聚类分析,黄红星,,本文提出了一种基于蚁群算法的动态模糊聚类方法。算法将蚁群算法与模糊C均值聚类有机的结合,实现了基于改进的目标函数聚类分析��

立即下载
论文研究-一种基于网格的增量聚类算法.pdf

分析了现有基于网格的聚类算法,该算法具有高效且可以处理高维数据的特点,但传统网格聚类算法的聚类质量受网格划分的粒度影响较大。为此,提出了一种基于网格的增量聚类算法IGrid。IGrid算法具有传统网格聚类算法的高效性,且通过维度半径对网格空间进行了动态增量划分以提高聚类的质量。在真实数据集与仿真数据集上的实验结果表明,IGrid算法在聚类准确度以及效率上要高于传统的网格聚类算法。

立即下载
论文研究-一种基于LSM的文本聚类算法 .pdf

一种基于LSM的文本聚类算法,王步钰,付学良,为从互联网海量数据中获取精准个性化旅游产品模式,本文提出了一种基于潜语义模型的文本聚类算法。通过建立旅游信息对象核心语义

立即下载
论文研究-社区居家养老服务的预约调度与路径规划问题研究:基于改善蚁群算法.pdf

论文研究-社区居家养老服务的预约调度与路径规划问题研究:基于改善蚁群算法.pdf,  随着中国人口进一步老龄化,养老行业受到各界越来越多的重视.中国的养老行业具有与其他国家不同的特点,表现为需要服务的老年人多且分布密集,一般以社区的形式集中在某个范围之内.这篇文章面向中国特色大型社区的居家养老服务领域,研究如何根据老人的预约来规划护工的路径并优化工作日程调度.本文根据三种护工技能水平和老人需

立即下载
Java项目经验汇总(简历项目素材)

Java项目经验汇总(简历项目素材)

立即下载

热点文章

下载码下载
做任务获取下载码
取消 提交下载码
img

spring mvc+mybatis+mysql+maven+bootstrap 整合实现增删查改简单实例.zip

资源所需积分/C币 当前拥有积分 当前拥有C币
5 0 0
点击完成任务获取下载码
输入下载码
为了良好体验,不建议使用迅雷下载
img

论文研究-CABPM:基于模式匹配的聚类算法 .pdf

会员到期时间: 剩余下载个数: 剩余C币: 剩余积分:0
为了良好体验,不建议使用迅雷下载
VIP下载
您今日下载次数已达上限(为了良好下载体验及使用,每位用户24小时之内最多可下载20个资源)

积分不足!

资源所需积分/C币 当前拥有积分
您可以选择
开通VIP
4000万
程序员的必选
600万
绿色安全资源
现在开通
立省522元
或者
购买C币兑换积分 C币抽奖
img

资源所需积分/C币 当前拥有积分 当前拥有C币
5 4 45
为了良好体验,不建议使用迅雷下载
确认下载
img

资源所需积分/C币 当前拥有积分 当前拥有C币
5 0 0
为了良好体验,不建议使用迅雷下载
VIP和C币套餐优惠
img

资源所需积分/C币 当前拥有积分 当前拥有C币
5 4 45
您的积分不足,将扣除 10 C币
为了良好体验,不建议使用迅雷下载
确认下载
下载
您还未下载过该资源
无法举报自己的资源

兑换成功

你当前的下载分为234开始下载资源
你还不是VIP会员
开通VIP会员权限,免积分下载
立即开通

你下载资源过于频繁,请输入验证码

您因违反CSDN下载频道规则而被锁定帐户,如有疑问,请联络:webmaster@csdn.net!

举报

  • 举报人:
  • 被举报人:
  • *类型:
    • *投诉人姓名:
    • *投诉人联系方式:
    • *版权证明:
  • *详细原因: