论文研究-基于EMD和优化K-均值聚类算法诊断滚动轴承故障.pdf

所需积分/C币:9 2019-07-23 00:08:07 919KB .PDF
29
收藏 收藏
举报

考虑到滚动轴承振动信号的非平稳特征和实际应用中典型故障样本不易获得等原因, 而在实际应用中, 故障程度识别和故障类型诊断一样重要, 提出一种滚动轴承故障类型及故障程度识别方法。首先对原始振动信号进行EMD分解, 对含故障特征的IMFintrinsic mode function分量进行信号重构, 随后对重构信号进行Hilbert包络谱分析, 在提取特征量的基础上, 应用优化K-均值聚类算法进行故障类型和故障程度分类。实验结果表明:基于EMD和优化K-均值聚类的故障类型和故障程度识别算法, 可将含不同故障类型的样本集, 按故障类型进行正确分类; 也可将含同种故障类型、不同故障程度的样本集, 按故障程度进行正确分类。
第7期 郭艳平,等:基于EMD和优化K-均值聚类算法诊断滚动轺承故障 2557 4.2K-均值聚类算法的优化 障诊断和故障程度识别新方法。通过对滚动轴承正常、内环故 原始K均值聚类算法的最终聚类结果在一定程度上依赖障外环故障和滚动体故障实验信号的分析结果表明:经验模 丁初始嬝类中心的选择,且易受孤立点的影响,聚类个数乜尢恋分解可太除信号噪声,提高信喚比,从而凸显故障特征;提取 法选择。针对以上问题,对原始算法作了如下优化: 的特征量可准确表征故障类型和故障程度;优化K-均值聚类 a)基于数据密度和散度指标选择初始聚类中心 算法可正确地将含不同故障类型的样本集进行正确分类;在对 将样本集中数据密度最大的点作为第一个聚类中心z,将含同一类型故障、不同故障程度的样本集分类中,优化K均值 与z1散度值最大的高密度点作为第二个聚类中心,依次类推,聚类算法正确地完成了不同故障程度的分类。囚此,基于 直到初始聚类中心可反映数据发布特征为止。 EMD和优化K均值聚类的滚动辋承故障诊断方法,可在准确 b)在迭代过程中排除噪声点的影响 提取障特征的基础上,有效识别滚动轴的故障类型,也可 以数据密度和散度指标来寻找远离数据集中心的极端数正确识别同种故障类型、不同故障程度的样本。文中所提出的 据点,在每次迭代计算新的聚类中心时,也将噪声点排除在外 方法是以故障特征频率处的幅值为特征量,在以后的研究工仵 这样可使聚类中心更能反映正常数据的特征。 中可在特征量的选取方面作进一步的有益探索。 参考文献 5实验结果及分析 [1 EREN L, DEVANEY M J Bearing damage detection via wavelet 由于篇幅原因,表1只列出了部分故障样本的特征量,其 ket decomposition of the stator current[J]. IEEE Instrumenta and Measurement, 2004, 53(2): 431-436 中,以n开头的样本为正常样本;开头的样本为内环有点蚀故 [2 DEVANEY M, EREN L Detecting motor bearing faults[ J. IEEE In- 障的样本;以o开头的样本为外环有点蚀故障的样本;以r开 strumentation and Measurement, 2004, 7(4): 30-50 头的样本为滚动体有点蚀故障的样本。用优化K均值聚关算31YUDi,CHNG: Jun-shen, YANG YU. Applicalion of ewd m 汏,把样本分成了四类,结果显示,优化K-均值聚类算法将所 thod and Hilbert spectrum to the fault diagnosis of rolling bearings 有样本按故障类型分成了四类(正常、内环故障、外环故障、滚 [J. Mechanical Systems and Signal Processing, 2005, 19(2) 动体故障),即第类:n-097:n098;n-099;n-100;第二类i-105, 259-270 i-106, i-107, i-108, i-169, i-170, i-171, i-172, i-209, i-210, i-211, [4 CHENG Jun-sheng, YU De-jie, YANG Yu. A fault diagnosis approach i212;第三类:o-130;第四类:r3006。对表1中具有内环故障 or rolling bearings based on EMD method and AR model J. Me- 的12个样本(i-105,-106,l-107,-108,i-169,-170,-171,- chanical Systerms and Signal Processing, 2006, 20(2): 350-362 172,i-209,i-210,1-21,;212)进行分类,其中前四个样本(i-[5」蔡艳平,李艾华,石林锁,等。基于FMD与谱峭度的滚动轴承故 05,-106,i-107,i-108)的故障点直径为0.1778mm,中间四个 障检测改进包络谱分析[J.振动与冲击,2011,30(2):167-172 样本(169,170,i171,i72)的故障点直径为0.3556m,[6]窦点阳,赵英凯,基于EMD和 Lempel指标的滚动抽承伤 后四个样本(-209,-210,-211,212)的故障点直径0.5334 猩度识别研究[J].振动与冲击,2011,29(2):5-8 mm。结果显示,K-均值聚类算法将这12个样本按故障程度分 [7]李辉,郑海起,杨绍晋,基于EMD和 Teager能量算子的轴承故障 成了一类,分类结果与实际故障情况完全吻合。 诊断研究「J.振动与冲击,208,27(10);I5-18 [8 YAN Ru-qiang, GAOR X. A tour of the Hilbert-Huang transform 表Ⅰ不同故障类犁样本特征量 an empirical Iool for signal analysis[ J]. IEEE Instrumentation and 特征量 Measurement Magazine, 2007, 10(5): 40-45 A n-y7437.4202.814.203.80014.9)7.8009.7(011.603.5)7.603.000 [9]杨字,于德介,程军圣.基于EMD与神经网络的滚动抽承故障 n-98202.9153.54.3U2.5003.5)16.8015.85.90U5.307.1003.000 诊断方決[J].振动与冲去,2005,24(1):85-88 [10]沈忘熙,黃席樾,马笑潇.基于EMD和支待向量机的柴油机故 n-100151.853.707.3009.2005.80013.100.70010.7014.804.500I1.10 障诊断「J.振动、测试与诊断,2010,30(1);9-22. i-106316.0113826781095454.854.5020.7069.002.90037.8021.60 11 The Case Western Reserve University. Bearing data center seeded i-107415.514193042788.1441.154.5023.9018.4024.909.70015.40 alttestdataLeb/Ol.http://casegroups.caseedu/bearingdata i-108653.9104334931539450.820.805.40015.9024.8065.7029.80 cen ter/home -1691273602.61010640.2150.359.2020.6024.9016.8051.905.900 [12 HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode -170829.2460.11312531.2123.533.4030.208.10031.3097.2029.80 decompsition and the Hilbert spectrum fur nonlinear and nonslat ion -171848.3529.680.9501.287.408.90036.503.40026.7061.307.700 ary time series analysis [I. Proceeding of Royal Society A, Math -1728)1.2728.41008438.4152.482.5071.7036.8016.7037.907.300 20944961030510925281861119.078.1098.2026.40152.38.300 ematical physical and Engineering Sciences, 1998, 454(1971) 2102476727.63742087167655.8015.972.0057.l14.754.60 1-211 3101 998.8 527727931792 IL 90 30.10 65 /0 22.80 70. 60 14.90 113 KANG S, RYU J, LEE J, et al. Analysis of spacetimennd adaptive pro 0303.413.20 cessing performance using K-means clustering algorithm for normalisa 1301800859.334.30105.49.70010720fn29284269.7032.5 r-300660848109386.8594.7417.21025312.7387.2587923181375 tion method in non-homogeneity detector process [J]. lET Signal Processing,2011,5(2):113-120 6结束语 [14 LEE J W, PARK R H, CHANG S Local tone mapping using the K eans algorithm and automatic gamma setting J. IEEE Transac- 介绍了基于EⅦD和优化K-均值聚类算法的滚动轴承故 tions on Consumer Electronics, 2011, 57(1): 209-217

...展开详情
试读 3P 论文研究-基于EMD和优化K-均值聚类算法诊断滚动轴承故障.pdf
立即下载 身份认证后 购VIP低至7折
一个资源只可评论一次,评论内容不能少于5个字
您会向同学/朋友/同事推荐我们的CSDN下载吗?
谢谢参与!您的真实评价是我们改进的动力~
  • 至尊王者

关注 私信
上传资源赚钱or赚积分
最新推荐
论文研究-基于EMD和优化K-均值聚类算法诊断滚动轴承故障.pdf 9积分/C币 立即下载
1/3
论文研究-基于EMD和优化K-均值聚类算法诊断滚动轴承故障.pdf第1页

试读结束, 可继续阅读

9积分/C币 立即下载