没有合适的资源?快使用搜索试试~ 我知道了~
Compact and stable real-time dual-wavelength digital holographic...
0 下载量 3 浏览量
2021-02-08
17:25:54
上传
评论
收藏 2.75MB PDF 举报
温馨提示
We propose a compact dual wavelength digital holographic Microscopy (DHM).based on a long working distance objective, which enabling quantitative phase imaging of.opaque samples with extended measurement range in one shot. The compactness of the.configuration is achieved by constructing a miniature modified Michelson interferometer.between the objective and the sample, and as a result it provides higher temporal stability than.conventional dual wavelength DHM. In the setup, the propagation direc
资源推荐
资源详情
资源评论
Compact and stable real-time dual-wavelength
digital holographic microscopy with a long-
working distance objective
RONGLI GUO
*
AND FAN WANG
School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, China
*guorongli@xatu.edu.cn
Abstract: We propose a compact dual wavelength digital holographic Microscopy (DHM)
based on a long working distance objective, which enabling quantitative phase imaging of
opaque samples with extended measurement range in one shot. The compactness of the
configuration is achieved by constructing a miniature modified Michelson interferometer
between the objective and the sample, and as a result it provides higher temporal stability than
conventional dual wavelength DHM. In the setup, the propagation directions of two reference
beams of different wavelengths can be independently adjusted, and thus two off axis
interferograms having orthogonal fringe directions can be simultaneously captured through a
monochrome CCD camera. The unambiguous vertical measurement range in optical path
length is extended to 8.338 μm, the length of a synthetic wavelength, by selecting two
wavelengths with a gap of 52 nm. The capability of the proposed setup is demonstrated with
measurements of a standard 1.8 μm height step as well as a moving micro staircase structure.
© 2017 Optical Society of America
OCIS codes: (090.1995) Digital holography; (120.5050) Phase measurement; (180.6900) Three-dimensional
microscopy; (090.4220) Multiplex holography.
References and links
1. S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation
measurements with pulsed digital holography,” Appl. Opt. 38(34), 7056–7062 (1999).
2. P. Gao, B. Yao, J. Min, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, and T. Ye, “Autofocusing of digital
holographic microscopy based on off-axis illuminations,” Opt. Lett. 37(17), 3630–3632 (2012).
3. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt.
Lett. 24(5), 291–293 (1999).
4. P. Ferraro, C. Del Core, L. Miccio, S. Grilli, S. De Nicola, A. Finizio, and G. Coppola, “Phase map retrieval in
digital holography: avoiding the undersampling effect by a lateral shear approach,” Opt. Lett. 32(15), 2233–2235
(2007).
5. C. Minetti, V. Vitkova, F. Dubois, and I. Bivas, “Digital holographic microscopy as a tool to study the thermal
shape fluctuations of lipid vesicles,” Opt. Lett. 41(8), 1833–1836 (2016).
6. J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated
digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
7. Q. Weijuan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase
compensation,” Opt. Lett. 34(8), 1276–1278 (2009).
8. B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase
microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119
(2014).
9. B. M. Kim and E. S. Kim, “Visual inspection of 3-D surface and refractive-index profiles of microscopic lenses
using a single-arm off-axis holographic interferometer,” Opt. Express 24(10), 10326–10344 (2016).
10. R. Guo, B. Yao, P. Gao, J. Min, M. Zhou, J. Han, X. Yu, X. Yu, M. Lei, S. Yan, Y. Yang, D. Dan, and T. Ye,
“Off-axis digital holographic microscopy with LED illumination based on polarization filtering,” Appl. Opt.
52(34), 8233–8238 (2013).
11. R. Guo, B. Yao, J. Min, M. Zhou, X. Yu, M. Lei, Sh. Yan, Y. Yang, and D. Dan, “LED-based digital
holographic microscopy with slightly off-axis interferometry,” J. Opt. 16(12), 125408 (2014).
12. J. Min, B. Yao, S. Ketelhut, C. Engwer, B. Greve, and B. Kemper, “Simple and fast spectral domain algorithm
for quantitative phase imaging of living cells with digital holographic microscopy,” Opt. Lett. 42(2), 227–230
(2017).
13. A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra, and J. Garcia-Sucerquia, “Accurate single-shot
quantitative phase imaging of biological specimens with telecentric digital holographic microscopy,” J. Biomed.
Opt. 19(4), 046022 (2014).
Vol. 25, No. 20 | 2 Oct 2017 | OPTICS EXPRESS 24512
#303937
https://doi.org/10.1364/OE.25.024512
Journal © 2017
Received 2 Aug 2017; revised 22 Sep 2017; accepted 22 Sep 2017; published 26 Sep 2017
14. G. Verma and A. Sinha, “Digital holographic-based cancellable biometric for personal authentication,” J. Opt.
18(5), 055705 (2016).
15. M. A. Herráez, D. R. Burton, M. J. Lalor, and D. B. Clegg, “Robust, simple, and fast algorithm for phase
unwrapping,” Appl. Opt. 35(29), 5847–5852 (1996).
16. C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12(9), 2071–2074 (1973).
17. C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and
multiwavelength contouring,” Opt. Eng. 39(1), 79–85 (2000).
18. S. Jeon, J. Cho, J. N. Jin, N. C. Park, and Y. P. Park, “Dual-wavelength digital holography with a single low-
coherence light source,” Opt. Express 24(16), 18408–18416 (2016).
19. D. G. Abdelsalam and D. Kim, “Two-wavelength in-line phase-shifting interferometry based on polarizing
separation for accurate surface profiling,” Appl. Opt. 50(33), 6153–6161 (2011).
20. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital
holography,” Opt. Lett. 28(13), 1141–1143 (2003).
21. J. Min, B. Yao, P. Gao, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, T. Duan, Y. Yang, and T. Ye, “Dual-
wavelength slightly off-axis digital holographic microscopy,” Appl. Opt. 51(2), 191–196 (2012).
22. M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength
transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35(15), 2612–2614 (2010).
23. P. Picart, D. Mounier, and J. M. Desse, “High-resolution digital two-color holographic metrology,” Opt. Lett.
33(3), 276–278 (2008).
24. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time
dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12),
7231–7242 (2007).
25. A. Khmaladze, M. Kim, and C. M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection
digital holography,” Opt. Express 16(15), 10900–10911 (2008).
26. Z. Monemhaghdoust, F. Montfort, Y. Emery, C. Depeursinge, and C. Moser, “Dual wavelength full field
imaging in low coherence digital holographic microscopy,” Opt. Express 19(24), 24005–24022 (2011).
27. N. A. Turko and N. T. Shaked, “Simultaneous two-wavelength phase unwrapping using an external module for
multiplexing off-axis holography,” Opt. Lett. 42(1), 73–76 (2017).
28. P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step
phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters,” Opt.
Express 19(3), 1930–1935 (2011).
29. N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett.
37(11), 2016–2018 (2012).
30. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett.
37(6), 1094–1096 (2012).
31. H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Common path interferometer based on the modified
Michelson configuration using a reflective grating,” Opt. Lasers Eng.
75,
1–4 (2015).
32.
Z. Monemhaghdoust, F. Montfort, Y. Emery, C. Depeursinge, and C. Moser, “Off-axis digital holographic
camera for quantitative phase microscopy,” Biomed. Opt. Express 5(6), 1721–1730 (2014).
33. S. Mahajan, V. Trivedi, P. Vora, V. Chhaniwal, B. Javidi, and A. Anand, “Highly stable digital holographic
microscope using Sagnac interferometer,” Opt. Lett. 40(16), 3743–3746 (2015).
34. D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for
quantitative phase microscopy in a micro-channel,” Opt. Lett. 41(10), 2354–2357 (2016).
35. C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic
microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
36. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge,
“Automatic procedure for aberration compensation in digital holographic microscopy and applications to
specimen shape compensation,” Appl. Opt. 45(5), 851–863 (2006).
1. Introduction
Digital holographic microscopy (DHM) is a powerful measuring technique which provides
quantitative phase information related to microscopic specimens [1–6]. Due to its noncontact,
wide-field and high precision nature, it has been widely used in surface micro-topography [7–
11] and biological cell imaging [12–14]. In single-wavelength DHM, usually the wrapped
phase within the range [-π π] is firstly constructed from a interferogram [3], and then a phase
unwrapping algorithm is applied to unwrap it to get continuous phase map [15], which is
proportional to the optical path lengths (OPL) of the tested specimen. In addition to the
drawback that the unwrapping algorithm is usually computationally demanding, the
maximum measurable OPL between adjacent sampling points of a specimen is restricted to
one time of wavelength, specifically, the maximum height difference is half the wavelength in
reflection mode when measuring abrupt steps; otherwise the algorithm will fail and result in
an error.
Vol. 25, No. 20 | 2 Oct 2017 | OPTICS EXPRESS 24513
剩余8页未读,继续阅读
资源评论
weixin_38747233
- 粉丝: 8
- 资源: 969
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 第一套 UML建模视频教程
- Python深度强化学习方法动态规划无人机基站轨迹源码
- 峰会报告自动化生成基础教程
- 算法竞赛中的离散化 概念总结和基本操作全解
- 算法竞赛位运算(简单易懂)
- 常用一维二维 前缀和与差分算法模板总结
- SAR成像算法+后向投影(BP)算法+星载平台实测数据
- 横向循环焦点轮播图横向循环焦点轮播图横向循环焦点轮播图横向循环焦点轮播图横向循环焦点轮播图横向循环焦点轮播图横向循环焦点轮播图横向循环焦点轮播图横向循环焦点轮播图横向循环焦点轮播图横向循环焦点轮播图横
- 基于Java和HTML的留言墙、验证码、计算器基础项目设计源码
- 基于JAVA C/C++的嵌入式设备组网平台物联网框架设计源码
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功