论文研究-中国股市风险CAViaR方法的稳定性分析及其时变建模.pdf

所需积分/C币:34 2019-09-20 15:15:18 240KB .PDF
0
收藏 收藏
举报

论文研究-中国股市风险CAViaR方法的稳定性分析及其时变建模.pdf,  在介绍诺贝尔经济学奖得主 Engle 及合作者 Manganelli 于 1999 年提出的 CAViaR 模型理论及实际意义的基础上,采用 Hansen 检验方法重点探讨了中国股市风险 CAViaR 建模的稳定性问题.通过对上证综合指数与深圳成指的实证研究, 认为 Engle 及 Manganelli 所力荐的四个
第4期 中国股市风险 CAViaR方法的稳定性分析及其时变建模 非对称模型(AS) R,(B)=B1+B2VaR1(B)+B3(y1)+B4(y/=1) 间接 GARCH(1,1)模型 Var, B)=B1+B2Vari-()+p3 适定性模型( Adaptive): Var, (B)=vaR-I(Bi)+B<[1+exp(GLVi-I+ VaR_()D] 其中{υ:}为历史对数收益率序列,负值表示损失,θ为置信水平,G为‘有限止数,本文取为10 以上模型的未知参数的估计,可采用 Koenker和 Bassett(1978)提出的回归分位数方法 3 Hansen检验与实证分析 本文的主要目的在于检验 CAViar模型用于中国股票市场风险建模的稳定性并对其进行合理的改 进.到目前为止,应用计量经济学中用」检验模型稳定性的方法很多,其中普遍采用就是 Hansen」1992 年在计算最小二乘法残差萘讣和的基础上提岀的 Hansen检验方法, Hansen检验的最大优点就是,对于 个具有结构性变化的线性模型,可以完仝忽略结构变化点的存在而很好地检验模型的稳定性, 对于一个标准的线性模型,其最小二乘估计的一阶条件是: ∑xne=0,i=1,2,…,m,∑(ea =1 定义 lit ee 通常单个参数稳定并不代表所有参数都稳定,故既要考虑单个参数的稳定性,也考虑所有参数的稳定 性.这样, Hansen检验分別给出了单个参数稳定性检验统计量和共冋稳定性检验统讣量 )SY-S 其 V:=∑h2,V=∑1,f=(1,2,”…,fm+,),S,=(S1,S21,Sm 在零假设条件下,一阶条件为0,故其累计和趋」0.故如果L,L较“大”,原假设被拒绝,模型表现 出非稳定性 为检验 CAViaR模型用于中国股市风险建模的稳定性,同时鉴于中国有上海证券交易所和深圳证券 交易所,本文将重点讨论两个指数:上证指数和深圳成份指数.为了探讨一般性及中国股市近年状况, 我们选择吋间跨度为1998年1月5日到2004年1月16日.本文所有数据均来自证券之星主页下的公 共数据库.我们选取每个股指凵收盘价作为计算收益率的基础.为保持股指价格的连续性和可比性,这 里采用几何收益率的计算方法,并以日收益的百分比计价,即将收益率乘100 y1=(ln(P)-n(1)×100 用这种儿何收益有两个好处:一是儿何收益率比算术收益率史只有讣量经济的解释意义;二是很容易 从一期扩展到多期 表1列出了两个指数的基本统计量.不难看出指数的收益率在零点附近徘徊,特别是深圳成指仅为 4 系统工程理论与实践 2005年3月 0.0015%(年收益率为0.375%,每年按250个父易日计算),这说明了近年來中国股市大盘调整的实 况.方差均大于2说明了中国股市的风险大,当然高风险与其相对的高收益也完全符合金融市场的一般 规律.收益率的偏度暗示着收益分布的非对称性,偏度为正说眀是正偏或冇偏的.峰度大于3说明收益 率的尾部比起正态分布要厚,两指数中上证指数达到9.2970.这一切说明如果用一般的正态分布肯定 不能正硝模拟股市真实情形 表1股指基本统计特 名称 均值 方差 偏度 样本量 000001上让指数 0.0187 2.0638 9.2970 0.4281 1446 399001深圳成指 0.0015 2.2615 8.6797 0.3089 1430 由于 Hansen检验最大的优点就是可以对总样本直接地进行模型稳定性检验,本文先采用 Koenker 和 Bassett(1978)提出的回归分位数方法估计未知参数β,然后通过 Hansen方法计算相应的检验统计 量.所有计算结果都列在表2-5,其中包括样本参数佔计值、标准误差、单参数1统计量与模型L统 计量.需要说明的是由于残差方差估计量都是103的无穷小量(a(1035)),这说明所有模型中的残差方 差估计是稳定的,故省略所有G估计值,本文计算了 CAViar四个常用模型在置信水平为1%和5%下 的检验结果.另外,本文把间接 GARCH(1,1)模型做线性处理,即 VaR()=B,+B, VaR (B)+Bv2 表2SAV模型 Hansen检验 Bcta(l) Bcta(2) Bcta(3) 置信水平1% 1% 1% 上|参数估计值0.1347 0.1948 0.8705 0.7886 0.3138 0.2465 证|标准误差(00830)(01742)0436)(01392 0.0870) (0.1358) 指单值L 1.1318 5.9387 1.0792 2.l116 L.0904 0.3806 数总值L 1.9379 15.7347 深|参数估计值0.1878 0.2342 0.8560 0.7822 0.3295 0.2462 圳标准差(0119 (0.1221) (0.0624) (0.0995) (0.1302) 0.1389) 成「单值L240 2.5074 2.1728 3.4561 1.6776 4.2250 指「总值L 2.6953 6.5183 表3AS模型 Hansen检验 Beta(l) Beta(2) Beta(3) Beta(4) 置信水平1% 5% 5% 1% 5% 上参数估计04837404390647308169036890.17171.17650.3045 证|标准误差(0.468)(0.1067)(02016)(0.0826)(0.1510)0.071)(0.585(0.0905 指「单值/22367014624.26460.13023.6720647404701921 数总值 7.17631.7568 深参数估计02536013800.79750.8119029270.12290.692403879 圳标准误差(0.14850985(00859(00940(090161704318)0144 成「单值L 12.83380.07515.83370.23992.36230.01981.12050.2030 指总值L 19.12201.8765 第4期 中国股市风险 CAViaR方法的稳定性分析及其时变建模 表4GARCⅡ模型 Hansen裣验 Bcta(l) Bcta(2) Bcta(3) 置信水平1% 1% 上参数计0.7496 0.5103 0.8l18 0.7528 0.6929 标准误差04518)0.3517)(0359)(009(.9239)(0.3692) 指单值L 1.0109 0.102 14068 0.6882 0.3451 0.2180 数「总佰L 17914 4.0233 深|参数估计0.8021 0.5304 0.8409 0.7782 0.8090 0.3268 圳|标准昃差(04168) (0.2876) (0.0348)0.0707) (2.0666) (0.3138) 成单值L 1.4257 1.5l09 0.2143 0.8162 0.6931 0.8239 指总佰L 6.6949 1307 表5 Adaptive模型 Hansen检验 上证指数 深圳成指 置信水平 5% 196 5% 参数估计 0.5858 0.6195 0.8231 0.9319 标准误差 (0.1687) (0.0912) (0.1692) (0.0795) 单值L 2.1153 0.4043 11.2745 1.1268 总值L 9.7804 1.l756 16.4727 2.5315 根据 Hansen(1992)给出关于单个参数检验统计量L的渐进临界值( Asymptotic Critical values) 表及 Edgerton和wel1(1994提供的关于总体稳定性检验统计量L的临界值表,很容易鉴别 CAViaR模 型是否适合中国股市主要指数或上文提到的某个模型适合中国情形 从模型的角度来看,适定型模型效果最差,无论是单个参数还是整个模型都不稳定,这是因为其虽 能对前一天的情形做一个增加(减小),但不能对这个增加(减小)的大小作出调整.而在四个模型中, 间接θAKH(1,1)模型拟合的最好,无论是对单个参薮还是对整个模型都相对稳定些,它对上证指数与 深圳成指的单参数估计都满足穩定性的原假设条件,特别是在1%的質信水平下对上证指数表现出了很 好的稳定性,这与GAR模型能够处理异方差冇关.SNν模型和ΔS模型相比,像预期一样AS明显优于 SAV,这是因为风险管理者最关注的是明大会损失多大,这样+5%的收益与-5%的损失对VR的影响 是一样的,也就要求模型对收益的正负做不冋的调整,而AS模型很好的考虑了这个问题. 从置信水平来看,通常情况下5%时的结果应当比1%的结果准确,这是因为模型没有考虑到极端 事件引起的.但是 Hansen检验CAiR模型吋确出现例外,模型SAV在对上证指数做估计吋,1%的显 著八平表现岀模型很稳定,模型的三个回归参薮与模型整体满足原偎改条作,总体稳定性检验统计量L 1.9379,单个参数检验统计量为L=(1.1318,1.0792,1.0904).在5%显著水平下,AS模型对两 个指数, GARCH(1,1)对上指指数都满足原假设.而在1%水平下,只有SAV对上证指数, GARCH(1,1) 对上证指数是稳定的 从两个指数的角度来看,没有一个指数比另一支明显符合CAⅤiaR的四个模型.这一方面说明这些 数据具有一般性特征,都是新兴市场一国内的股票不同指数,受同一体制影响;另一方面说明木文所涉 及到的四个 CAViaR模型不适合当前中国股市 4模型的改进 对于新兴的中国股票市场,由于政策性调整或投资者的盲从心理,使得股市出现极端运动,进而导 致数据结构性变化也在所难免(如1999年的“5.19”行情使得上证指数与深成指数在31个交易日内分 别上升59.40%和85.53%,这是中国股市有史以米最大的井喷行情;2002年“6.24”突变,即停止执 6 系统工程理论与实践 2005年3月 行《坚持国有股筹集社会保障资金管理暂行办法》的岀台,沪指142点的跳空缺冂,532亿的单口成交 使得沪指接近涨停板,沪深两市千余支股票收报涨停).鉴于此,我们提出了广义的时变参数 CaViaR模 B;=B;(,y,…,y1-1),i=1,2,3,4. 为验证此时变模型的有效性,本文使用最简单的和形式: B1=Bnf(y-1<0)+B12(y/=1≥0),i=1,2,3,4 提出这种时变参数模型的原因在」相对」正的收益而言,人险管理者更关注损失.我们采用最常用 的失败率VaR准确度检验方法,对两个指数进行实证分析,得出了模型改进前后的计算结果(如表6 示).显然,改进模型结果明显好于改进前的,对于1%的置信水平,失败数应为5个左右:而5%的置 信水平,失败数应为25个左右(本文的样本外检验数取500) 表6样本外失败率检验 结论与展望 模型 上证指数深川成指 本文针对四个典型的 CAViaR模型,就 %1%5% 中国股市风险建模的参数稳定性问题,采 常参数 31 SAV模型 用 Hansen检验进行了较为深入的探讨,并 时变参数 给出了模型改进办法.实证分析表明四个 常参数 12363432 4 AS模型 典型 CAViar模型并不像顶期那样适合中 时变参数 29 国股市情形.笔者认为这与中国新兴市场 GARCH(,1模型 常参数 的某些特有现象分不开的,如股市涨停板 时变参数 的设置、国有股的存在等都阻碍了股市的 常参数 Adaptive模型 67843 自由发展.另一方面投机者的盲从心理与 时变参数 20 29 中国投资渠道的狭窄也不可忽视 基于本文的工作,当然还有许多重要工作有待继续.如可以把股票按照行业或板块进行分类,讨论 模型的稔定性.对于模型的改进,我们可以考虑把定常参数发展成时变参数,以满足突发事件或结构变 化惜米的影响,比如至少可以把各个参数设置成几个状态,运用马氏过程(参见 Hamilton,1994)进行建 模.这是一个具有挑战性的新问题 参考文献 L1 Andrews, Donald. W. K. Tests for parameter instability and structural change with unknown change pointlJ Econometrica,1993,61(61):821-856 [2 Basle committee on banking supervision, amendment to the capital accord to incorporate market risksis. 1996 L3 Beder T S. VaR Seductive but dangerous. Financial Analysts Journal, 1995, Sep /0ct: 12-21 [4] Chow G C. Tests of equality between sets of coefficients in two linear regressions [J] Econometrica,1960,28(2):591-605 [5 Davies R B. Hypothesis testing when a nuisance parameter is present only under the alternative LJ] Biometrika,1977,64(1):247-254 [6 Davies R B. Hypothesis testing when a nuisance parameter is present only under the alternative lJ] amerika,1987,74(1):33-43. (下转第51页) 第3期 易腐商品最优订货批量与定价及其粒子群优化解 L1] Weatherford L R, Bodily se. a taxonomy and research overview of perishable-asset revenue management: Yield management, overbooking, and pricing j. Operations Research, 1992, 10(5):831-8141 2] Wen Zhao, Yu-Sheng Zheng. Optimal dynamic pricing for perishable assets with nonhomogeneous demand J Management Science, 2000, 46(3):375389 [3 Gallego G, Van Ryzin G. Optimal dynamic pricing of inventories with stochastic demand over finite horizons L J_. Management Science, 1994, 40(2): 999-1020 [1 Young H Chun. Optimal pricing and ordering policies for perishable commodities [J. European Journal of Operational Rcscarch. 2003, 144(1): 68-82 [5] Kennedy, R C Eberhart. Particle swarm opt imization [A]. Proceedings of the 1995 IEEE International Conference on Neural Net works [C]. Perth, Australia, 1942-1948 [6]侯志荣,吕振肃.基于Ⅵ ATLAB的粒」群优化算法炇其应用[J].计算杌仿真,2003,20(10):68-70. Hou Zhirong, Ly Zhensu. Particle swarm optimization with application based on matlab []]. Computers Simulation, 2003, 20(10): 68-70.(In Chinesc) 半**半 (上接第6页) [7] Engle R F, Manganelli S. CAViaR: Conditional autoregressive value at risk by regression quantiles[r]. NBer Working paper 7311, 1999. [8] Hamilton J D. Time Series Analysis[M]. Princeton University Press, New Jersey, 1994 [9 llans F and Alexander S. Stochastic Finance, An Introduction in Discrete Time_M]. Walter de Gruyter, 2002 [10JHansen B E. Testing for parameter instability in linear models[J. Journal of Policy Modeling,1992,14(4):517-533 [11] Inclan C and Tiao G C. Use of cumulative sums of squares for retrospective detection of changes of variances[J]. J. Amer. Statist. Assoc, 1994, 89(3): 913-923 [12 Jorion P. Valuc at Risk: The New Benchmark for Controlling Market Risk MI. Chicago: Irwin Professional Publishing, 1997 L13] Morgan J P. Risk Metrics Monitor LM]. 2nd Quarter, 1996 [141 Koenker R, Bassett I. Regression quantiles Jl. Economctrica, 1978, 46(1): 33-50 [15] Manganelli S, Engle Rf. value at risk models in finance [R]. working paper(75), European Central Bank, 2001 [16] Schwert G W. Why does stock market volatility change over time? [J]. Journal of Finance 1988,XLIV(5):1115-1153 [17 Tay lor S. Model ing Financial Time Series LM]. John Wiley and Sons, London, 1986

...展开详情
试读 7P 论文研究-中国股市风险CAViaR方法的稳定性分析及其时变建模.pdf
立即下载 低至0.43元/次 身份认证VIP会员低至7折
抢沙发
一个资源只可评论一次,评论内容不能少于5个字
weixin_38744207 欢迎大家使用并留下宝贵意见
2019-09-20
  • 至尊王者

    成功上传501个资源即可获取
关注 私信 TA的资源
上传资源赚积分or赚钱
    最新推荐
    论文研究-中国股市风险CAViaR方法的稳定性分析及其时变建模.pdf 34积分/C币 立即下载
    1/7
    论文研究-中国股市风险CAViaR方法的稳定性分析及其时变建模.pdf第1页
    论文研究-中国股市风险CAViaR方法的稳定性分析及其时变建模.pdf第2页

    试读结束, 可继续读1页

    34积分/C币 立即下载 >