% This function finds out the first two moments
% of a linear Stochastic Differential Equation (LSDE)
% LSDE : dy(t) = ay(t)+ b*sigma*dW(t) where W(t) is Wiener Process
% Also dW(t)=n(t)dt where n(t) is Gaussian White noise
% Inputs : a, b, sigma( magnitude of sqrt of PSD) and
% c ( =y(0) initial conditions)
% t (Time Vector)
% Output :m(t)( First Moment - Mean)
% M(t) (Second Moment)
% Note the solution statistics shown below have been derived using Ito's
% Calculus
% Author: abhiruplahiri@yahoo.com
function [m,M] = LSDE(a,b,sigma,c,t)
m=c*exp(a*t);
q=b^2*sigma^2/(2*a)
p=c^2+q;;
M=-q + p*exp(2*a*t); % derived using Ito's Formula
%plot(t,m,t,M)
%grid
weixin_38744207
- 粉丝: 339
- 资源: 2万+