论文研究-欧拉方程的隐式间断有限元算法研究.pdf

所需积分/C币:50 2019-09-10 14:05:35 528KB .PDF
收藏 收藏
举报

针对Euler方程,设计了适合间断Galerkin有限元方法的LU-SGS、GMRES以及修正LU-SGS隐式算法。采用Roe通量以及Van Albada限制器技术实现了经典LU-SGS、GMRES算法,引入高阶项误差补偿,发展了修正LU-SGS算法。以NACA0012、RAE2822翼型为例验证分析了算法的可靠性和高效性。结果表明修正LU-SGS算法存储量较少,程序实现方便,而且计算效率是LU-SGS算法的2.5倍以上,接近于循环GMRES算法。
段治健:欧拉方程的隐式间断有限元算法研究 2014,50(16)23 具体计算过程如下 图3和图4分别为两个算例时间收敛曲线。可以看 (1)采用 LU-SGS格式,求解△Q。 出,循环 GMRES算法计算效率远高于LU-SGS格式。 (D+L)△Q=R 计算效率是LU-SGS格式的3倍左石。修正LU-SGS格 D(D+Ue=△Q 式效率接近于循环 GMRES算法,且所需存储量较少,单 步迭代时间短,计算效率是 LU-SGS格式的2.5倍以上。 △O,=D1R2 I△S△O 0 -LU-SGS △D=△Q,-D∑ ,2 I△S△O - GMRES Error-CLU-SGS (2)将第(1)步得到的AQ代入高阶小量LDU)△Q 中,则有 (D+L)D(D+U)△Q"=R"+(LDU)△Q 12345 上式计算过程同(1)、(2) 6 5数值算例及结果分析 算例1NACA0012翼型跨音速无粘绕流,计算网格 图3NACA0012翼型计算时间曲线 节点2270个,单元数为4355个。计算状态为Ma=0.8, GMRES 算例2RAF2822冀型跨音速无粘绕流,计算网格 LLU-SGS Error-CLU-SGS 节点2270个,单元数为4355个。计算状态为Ma=0.725 2 =2.54° 图1和图2分别为NACA0012和RAE2822翼型的压 力系数分布曲线,数值计算的结果与实验值基本吻合 024681012141618202224262830 图4RAE2822冀型计算时间曲线 H EXP 图5和图6中明显可以看出,克服了显式方法严格 rm LU-SGS GMRES 的条件限制,CFL数从1变到10时,残值与时间效率提 C-SO 高了近2倍,从100到1000时,几乎吻合,此时CFL数对 0.2 0.4 0.6 0.8 于计算效夲的影响几乎为0。总体来说,LU-SGS格式 的单步计算量最少,收敛迭代步数最多。循环 GMRES 图1NACA0012翼型表面压力系数对比 -CFL=l 10 - CFL-100 0.5集 CFL-1000 0.5 GMRES 10 Improved LU-SGS Experiment 1.5 0 0.6 0.8 0510152025303540455055606570 图2RAE2822翼型表面压力系数对比 图5NACA0012翼型随CL数变化计算时间曲线 24 014,50(16) Computer Engineering and4 pplications计算机工程与应用 methodj. International Journal for Numerical Methods in CFL=I -CFL=10 Engineering, 2008, 73: 597-623 CFL=100 [4] Qiu J X, Liu T, Khoo B C Runge-Kutta discontinue CFI=10()() Galerkin methods for compressible two-medium flow sim ulations: Onc-dimcnsional casc[J]Journal of Computational Physics,2007,222:353-373 [5] Yoon s, Jameson A Lower-upper symmetric Gauss-Seidel method for the Euler and Navier-Stoker equations[J] alaa Journal,1988,26(9):1025-1026 02000400060008000100001200014000 6] Saad Y, Schultz M H A generalized minimal residual 图6NACA0012翼型随CFI数变化迭代步数收敛曲线 algorithm for solving nonsymmetric linear systems[J] IAM Journal on Scientific and Statistical Computing 格式单步计算时间最长,收敛所需的步数最少。修正 1986,7:856-869 LU-SGS格式计算效率接近循环 GMRES格式,且所需[7李劲杰杨青,杨永年,三维非结构网格Euer方程的LU-SGS 存储量少。 算法及其改进[J计算物理,2006,23(6):748-752 [8]李春娜,叶正寅基于二维非结构树格的 GMRES隐式算法[ 6结束语 西北工业大学学报,2007,25(5):630-635 本文研究了欧拉方程的三种隐式间断有限元算法, [9] Jawahar P, Kamath HA high-resolution procedure for Euler and Navier-Stokes computations on unstructured grids[J] 显然 GMRES格式效率最高,但是其算法复杂,编程实 J Comput Phys, 2000, 164: 16.5-203 现比较困难,而且对内存的需求较大。修正LU-SGS格 [10] Orkwis P D, George J H A comparison of CGS precondi 式明显优于传统IUJ-SGS格式,计算效率接近于 tioning methods for Newtons method solvers[C/AlAA GMRES算法,显示出了其良好的稳定性和求解效率。 当然,线性方程组的并行处理技术2,近年米发展的[11段治健,杨永,马欣荣,等求解带状线性方程组的一种并 p、hp多重网格方法,或者系数矩阵条件数较大时, 行算法[计算机科学,2010,37(3):242-244 采用ⅡU(0)、 Block-LU(0)、 Gauss-Seidel SSoR预处12]芳芳,吕全义解非对称块三对角线性方程组的并行算 理方法等,都可以很好地提高计算效率 法[西北工业大学学报,2011,29(2):318-322 [13] Krzysztof J F, Todd A O, James L, et al. P-Multigrid solution of high-order dis 参考文献 zations of the compressible Navicr-Stokes cquations[] [1] Reed W H. Hill T R Triangular mesh methods for the Journal of Computational Physics, 2005. 207: 92-113 Neutron Transport equation, LA-UR-73-479R]. Los Ala- [14 Cristian R N, Dimitri J M. H-order discontinuous Galerkin mos Scientific Laboratory, 1973 methods using an hp-multigrid approach[J]Journal of [2 Cockburn B, Shu C-W.Foreword for the special issue on Computational Physics, 2006.213: 330-357 discontinuous Galerkin mcthod[J]Journal of Scicntific [15 Laslo T D, David L D Preconditioning methods for dis Computing, 2005: 22-23 continuous Galerkin solutions of the Navier-Stokes 3 Luo H, Beaum J D, Lohner R On the computation of steady equations [J. Journal of Computational Phsics, 2009, 228: state compressible flows using a discontinuous galerkin 3917-3935

...展开详情
试读 4P 论文研究-欧拉方程的隐式间断有限元算法研究.pdf
立即下载 低至0.43元/次 身份认证VIP会员低至7折
抢沙发
一个资源只可评论一次,评论内容不能少于5个字
weixin_38743506 如果觉得有用,不妨留言支持一下
2019-09-10
  • 至尊王者

    成功上传501个资源即可获取
关注 私信 TA的资源
上传资源赚积分or赚钱
最新推荐
论文研究-欧拉方程的隐式间断有限元算法研究.pdf 50积分/C币 立即下载
1/4
论文研究-欧拉方程的隐式间断有限元算法研究.pdf第1页

试读结束, 可继续读1页

50积分/C币 立即下载 >