线性代数作为抽象数学的导论Linear Algebra as an Introduction to Abstract Mathematics


-
本书旨在弥合主要面向计算的低年级本科课程与高级数学课程中遇到的抽象数学之间的差距。
3.1 The Fundamental Theorem of Algebra And Factoring Polynomials 3 The fundamental theorem of algebra 26 3.2 Factoring polynomials Exercises 4 Vector Spaces 36 4.1 Definition of vector spaces 36 4.2 Elementary properties of vector spaces 4.3 Subspaces 4.4 Sums and direct sums Exercises 5 Span and bases 5.1 Linear span 48 5.2 Linear independence 5.3 bases 5. 4 Dimension Exercises 6 Linear Maps ⑥64 6.1 Definition and elementary properties 6.2 Null spaces 6.3 Range 6.4 Homomorphisms 6.5 The dimension formula 6.6 The matrix of a linear map 6.7 Invertibility E Cerises 7 Eigenvalues and Eigenvectors 7.1 Invariant subspaces 7. 2 Eigenvalues 86 7. 3 Diagonal matrices 7.4 Existence of eigenvalues 7.5 Upper triangular matrices 7.6 Diagonalization of 2 x 2 matrices and applications Exercises 8 Permutations and the Determinant of a Square matrix 102 8.1 Permutations 8. 1.1 Definition of permutations 山O2 8.1.2 Composition of permutations LO⑤ 8.1.3 Inversions and the sign of a permutation I07 8.2 Determinants 110 8.2.1 Summations indexed by the set of all permutations 8.2.2 Properties of the determinant 8.2.3 Further properties and applications 8.2.4 Computing determinants with cofactor expansions Exercises 8 9 Inner Product Spaces I20 9.1 Inner product. 9.2 Norms I22 9.3 Orthogonality T24 9.4 Orthonormal bases 9.5 The Gran-SchInidt orthogonalization procedure 9.6 Orthogonal projections and minimization problems 132 Exercises I36 10 Change of Bases 139 10.1 Coordinate vectors 10.2 Change of basis transformation 141 Exercises 145 11 The Spectral Theorem for Normal Linear Maps 147 11.1 Self-adjoint or hermitian operators 11.2 Normal operators 49 11.3 Normal operators and the spectral decomposition IV 11.4 Applications of the Spectral Theorem: diagonalization 11.5 Positive operators 57 11.6 Polar decomposition 11.7 Singular-value decomposition Exercises 61 List of appendices A Supplementary Notes on Matrices and Linear Systems A 1 From linear systems to matrix equations A 1. 1 Definition of and notation for matrices I65 A.1.2 Using matrices to encode linear systems A 2 Matrix arithmetic A 2.1 Addition and scalar multiplication A.2.2 Multiplication of matrices I7⑤ A.2. 3 Invertibility of square matrices A3 Solving linear systems by factoring the coefficient matrix A.3. 1 Factorizing matrices using Gaussian elimination A.3.2 Solving homogeneous linear systems A 3.3 Solving inhomogeneous linear systems 195 A.3.4 Solving linear systems with LU-factorization 99 A 4 Matrices and linear maps ......2O4 4.1 The canonical matrix of a linear map A 4.2 Using linear maps to solve linear systems 205 A.5 Special operations on matrices 2 A.5.1 Transpose and conjugate transpose A.5.2 The trace of a square matrix Exercises 2I4 b The language of sets and functions B. 1 Sets 2I8 B2 Subset, uniOn, intersection, and Cartesian product 220 B 3 Relations B 4 Functions 223 c Summary of algebraic Structures Encountered 226 C. 1 Binary operations and scaling operations 26 C2 Groups. fields, and vector spaces C 3 Rings and algebras 233 D Some Common math Symbols and abbreviations 23 E Summary of Notation Used 248 F Movie Scripts 246 Chapter 1 What is Linear Algebra? 1.1 Introduction This book aims to bridge the gap between the mainly computation-oriented lower division undergraduate classes and the abstract mathematics encountered in more advanced mathe- matics courses. The goal of this book is threefold 1. You will learn Lincar Algebra, which is one of the most widely used mathematical theories around. Linear Algebra finds applications in virtually every area of mathe matics, including multivariate calculus, differential equations, and probability theory It is also widely applied in fields like physics, chemistry, economics, psychology, and engineering. You are even relying on methods from Linear Algebra every time you use an internet search like Google, the Global Positioning System(GPS), or a cellphone 2. You will acquire computational skills to solve linear systems of equations, perform operations on matrices, calculate eigenvalues and find determinants of matrices 3. In the setting of Linear algebra, you will be introduced to abstraction. As the theory of Linear algebra is developed, you will learn how to make and use definitions and how to write proofs The exercises for each Chapter are divided into nore computation-oriented exercises and exercises that focus on proof-writing 2 CHAPTER 1. WHAT IS LINEAR ALGEBRA? 1.2 What is Linear algebra? Linear Algebra is the branch of mathematics aimed at solving systems of linear equations with a finite number of unknowns. In particular, one would like to obtain answers to the llowing questions Characterization of solutions: Are there solutions to a given system of linear equations? How many solutions are there Finding solutions: How does the solution set look? What are the solutions? Linear algebra is a systematic theory regarding the solutions of systems of linear equations Example 1.2.1. Let us take the following system of two linear equations in the two un- knowns 1 and 2x1+x2=0 This system has a unique solution for a1, 2 CR, namely ai=, and C2=2 The solution can be found in several different ways. One approach is to first solve for one of the unknowns in one of the equations and then to substitute the result into the other quation. Here. for example, we might solve to obtain 1+x2 from the second equation. Then, substituting this in place of l in the first equation, we Lve 2(1+x2)+2=0 From this, 2=-2/3. Then, by further substitution x1=1+ Alternatively, we can take a more systematic approach in eliminating variables. Here for example, we can subtract 2 times the second equation from the first equation in order to obtain 3. 2 =-2. It is then innediate that u 2=-= and, by substituting this value for 2 in the first equation, that 01-3 1.2. WHAT IS LINEAR ALGEBRA? 3 Example 1.2.2. Take the following system of two linear equations in the two unknowns x1 and 1+2 2x1+2 We can eliminate variables by adding -2 times the first equation to the second equation which results in o This is obviously a contradiction, and hence this system of equations has no solution Example 1. 2.3. Let us take the following system of one linear equation in the two unknowns CI and 2: C In this case, there are infinitely many solutions given by the set. [2=301 T1ER. You can think of this solution set as a line in the Euclidean plane r 1 In general, a system of m linear equations in n unknowns T1, T2,..., In is a collec tion of equations of the form 113C1+a12x℃2+… 211+222+…+a b2 am11+am22+ + mnen where the aii 's are the coefficients(usually real or complex numbers)in front of the unknowns and the bi's are also fixed real or complex numbers. A solution is a set of numbers $1,$2,..., Sn such that, substituting C1=$1, I2=$2, .. Cn=Sn for the unknowns. all of the equations in System (1. 1b hold. Linear Algebra is a theory that concerns the solutions and the structure of solutions for linear equations. As we progress, you will see that there a lot of subtlety in fully understanding the solutions for such equations 4 CHAPTER 1. WHAT IS LINEAR ALGEBRA? 1.3 Systems of linear equations 1.3.1 Linear equations Before going on, let us reformulate the notion of a system of linear equations into the Language of functions. This will also help us understand the adjective "linear"a bit better nction a nap f:X→Y from a set x to a set y The set x is called the domain of the function, and the set y is called the target space or codomain of the function. An equation is where E X and y E Y.(If you are not familiar with the abstract notions of sets and functions, please consult Appendix Bl) Example 1.3.1. Let f R-R be the function f(r)=r3-T. Then f(ar)=3-T=1 is an equation. The domain and target space are both the set of real numbers R in this case In this setting, a system of equations is just another kind of equation Example 1.3.2. Let X=Y= R2=RXR be the Cartesian product of the set of real numbers. Then define the function f: R2 R2 as f(x1,x2)=(2x1+x2,x1-x2) and set y=(0, 1). Then the equation f(a)=y, where =(21, 2)C R, describes the system of linear equations of Example 1. 2.11 The next question we need to answer is, "What is a linear equation? Building on the definition of an equation, a linear equation is any equation defined by a "linear"'function f that is defined on a"linear"space(a k.a. a vector space as defined in Section will elaborate on all of this in later chapters, but let us deMonstrate the nain features of a "linear"space in terms of the example R2. Take -(31, 2),y=(1, 32)E R2. There are

-
2019-10-27
34.28MB
1. gilbert strang 的《Introduction to Linear Algebra 线性代数导论》(4th Ed.)
2017-10-06这本教材是Gilbert Strang教授在MIT讲授《线性代数》课程的指定教材(MIT Open Course Ware提供公开课视频),也是被很多其他大学选用的经典教材。这本教材难度适中,讲解清晰
96B
线性代数-面向预微积分学生的线性代数简介Linear Algebra - An Introduction to Linear Algebra for Pre-Calculus Students
2019-11-15清楚地解释了线性代数的入门概念。 为学生提供许多实际的线性代数主题供您探索。 具有通用数学经验的学生(包括代数I在内)应该能够理解。
61.61MB
Introduction to Linear Algebra 5th 2016 高清扫描版带目录 Gilbert Strang
2019-01-17Gilbert Strang编著的Introduction to Linear Algebra 5th,线性代数导论第五版,高清扫描版带目录,适合打印或浏览自学。对矩阵投影和最小二乘法的介绍尤为精妙
1.34MB
Introduction to Linear Algebra 5th习题解答.rar
2020-04-11Introduction to Linear Algebra 5th习题解答 来自https://math.mit.edu/~gs/linearalgebra/
871KB
INTRODUCTION TO LINEAR ALGEBRA 清晰版 第五版 习题解答
2019-10-31Gilbert Strang编写的Introduction to Linear Algebra第五版习题解答 清晰
52.29MB
Introduction to Linear Algebra, 5th edition 高清扫描版
2018-09-24线性代数是 机器学习 必备的基础课程,彩色高清扫描版。
6.20MB
Introduction to Applied Linear Algebra 英文版
2018-11-22《Introduction to Applied Linear Algebra》是斯坦福大学的最新专为机器学习编写的数学一本通,这个是EE103 (Stanford) and EE133A (UCLA
5.75MB
Meyer的矩阵分析和线性代数matrix analysis and applied linear algebra
2010-04-08矩阵分析和线性代数matrix analysis and applied linear algebra;
75.25MB
Introduction_to_Linear_Algebra.pdf
2019-07-04线性代数导论,美国经典线性代数教程,麻省理工学院线性代数公开课指定教材,教程讲解详细透彻,而国内教程大多十分抽象,使读者难以真正理解线性代数的意义和应用,而这本书可以很好的教会你这些
102.98MB
Introduction to Linear Algebra 5th Edition Gilbert Strang 扫描 PDF 带目录
2019-02-09MIT 大牛Gilbert Strang 编写的《 Introduction to Linear Algebra》第五版 2016年出版的,是网易公开课http://open.163.com/spec
1.11MB
Introduction to LInear Algebra,5th edition solutions
2019-03-15MIT线性代数经典教材习题解析,高清版本,配合教材使用效果更佳。
34.41MB
Introduction_to_Linear_Algebra_(4th_Edition)_by_Strang.pdf
2020-01-17Introduction_to_Linear_Algebra_(4th_Edition)_by_Strang.pdf
13.0MB
线性代数教材 Linear algebra and its applications 英文原版
2018-01-25Linear algebra and its applications 麻省理工 线性代数公开课教材 可以配合视屏使用
56.27MB
Introduction to Linear Algebra 5th Gilbert Strang
2018-11-13Linear algebra is something all mathematics undergraduates and many other students, in subjects rang
110B
线性代数做错了Linear Algebra Done Wrong
2019-11-15本书属于线性代数的第一门课程,向学生介绍了严格的证明和形式定义-简而言之,介绍了现代理论(抽象)数学的风格。
879KB
Linear Algebra 线性代数课后答案
2010-07-13Lee W.Johnson R.Dean Riess Jimmy T.Arnold Introduction to linear Algebra
56.87MB
Introduction to Linear Algebra, 5th edition--Gilbert Strang
2019-03-17Ed 5, Gilbert Strang - Introduction to Linear Algebra (2016, Wellesley-Cambridge Press),有书签,内容清晰,非扫描
60.97MB
Gilbert Strang - Introduction to Linear Algebra 5th (1).pdf
2019-09-12Gilbert Strang - Introduction to Linear Algebra-Wellesley-Cambridge Press (2016) (1) 英文版线性代数书籍 最新版 内
121B
从几何到代数-线性代数简介From Geometry to Algebra - An Introduction to Linear Algebra
2019-11-15提出线性代数的基本概念,例如向量空间,基,内积空间和线性变换。 还显示了抽象概念如何应用于各种问题。
3.27MB
An Introduction to Homological Algebra
2011-05-10Homological Algebra has grown in the nearly three decades since the first edition of this book appea
13.6MB
【国外高质量线性代数教材】Linear algebra and its applications 高清 含详细目录 详细书签 英文版
2019-03-11【国外高质量线性代数教材】Linear algebra and its applications 高清 含详细目录 详细书签 英文版 目录为个人整理,供大家使用
6.81MB
Introduction to Applied Linear Algebra(Stephen Boyd)最新
2019-03-24Introduction to Applied Linear Algebra(线性代数应用) Stephen Boyd Department of Electrical Engineering Sta
8.55MB
2. 《Linear Algebra and Its Applications.线性代数及其应用》(第4版) by David C Lay
2017-10-06这是一本结合应用能够真正让人理解线性代数是干什么的书。每一个章都以一个具体的应用开始,各章内容甚至习题中可能还会引入新的例子。范围包括经济模型、生态模型、飞机制造、计算机图形、数字图像处理、控制理论等
36.77MB
Introduction to Linear Algebra
2013-01-06最近突然要用到线性代数的一些东西。从网上看到Introduction to Linear Algebra这本书(Algebra_Gilbert Strang),介绍的清晰易懂且很到位。就搜集了一些。包
51.83MB
Introduction to Linear Algebra 5th(线性代数引论第五版 文字版)
2019-01-20Introduction to Linear Algebra(5th edition 2016)文字版!不是扫描版,带章节标题!
54.89MB
Introduction to Linear Algebra 5th 2016第五版高清版(带TOC和cover,还有习题答案)
2019-10-31Introduction to Linear Algebra 5th 2016,是高清版本的,而且还有习题答案,以及官网的toc,方便大家使用
9.12MB
线性代数及其应用Linear Algebra and Its Applications, 中文+英文 高清+书签
2019-04-08线性代数及其应用Linear Algebra and Its Applications, 4th-Gilbert Strang, 中文+英文 高清+书签
1.90MB
An Introduction to Linear Algebra 2017.pdf
2019-06-17Linear algebra is a branch of both pure and applied mathematics. It provides the foundation for mult
31.7MB
Linear Algebra Foundations to Frontiers
2018-10-15Linear Algebra: Foundations to Frontiers (LAFF) is an experiment in a number of different dimensions
56.87MB
Introduction to Linear Algebra_5th_2016_by Gilbert Strang.pdf
2019-10-12线性代数的讲义,供大家下载学习,这个当时找了好久,
-
学院
python办公自动化技巧
python办公自动化技巧
-
学院
【数据分析-随到随学】Python语法强化与数据处理
【数据分析-随到随学】Python语法强化与数据处理
-
下载
东南大学工程矩阵.rar
东南大学工程矩阵.rar
-
学院
C++异步串口通信
C++异步串口通信
-
博客
i5 10400f配什么主板
i5 10400f配什么主板
-
博客
《Javascript高级程序设计(第四版)》红宝书学习笔记(2)(变量、作用域与内存)
《Javascript高级程序设计(第四版)》红宝书学习笔记(2)(变量、作用域与内存)
-
学院
【数据分析-随到随学】互联网行业业务指标及行业数
【数据分析-随到随学】互联网行业业务指标及行业数
-
学院
Kotlin协程极简入门与解密
Kotlin协程极简入门与解密
-
下载
visual c++ vc操作word文档.zip
visual c++ vc操作word文档.zip
-
博客
内网渗透之代理转发
内网渗透之代理转发
-
下载
incubator-dubbo-ops-master.zip
incubator-dubbo-ops-master.zip
-
博客
1.22
1.22
-
学院
JavaEE框架(Maven+SSM)全程实战开发教程(源码+讲义)
JavaEE框架(Maven+SSM)全程实战开发教程(源码+讲义)
-
博客
洛谷 P5738 【深基7.例4】歌唱比赛 题解
洛谷 P5738 【深基7.例4】歌唱比赛 题解
-
下载
基础算法 第9章 第1节 动态规划基础(C++版)-2021.01.22.pdf
基础算法 第9章 第1节 动态规划基础(C++版)-2021.01.22.pdf
-
学院
转行做IT-第2章 HTML入门及高级应用
转行做IT-第2章 HTML入门及高级应用
-
学院
C#文件传输、Socket通信、大文件断点续传
C#文件传输、Socket通信、大文件断点续传
-
博客
Vue中的6种插值操作总结,还有你不知道的吗?
Vue中的6种插值操作总结,还有你不知道的吗?
-
下载
COMSOLMultiphysics55_38121.zip
COMSOLMultiphysics55_38121.zip
-
学院
【2021】UI自动化测试框架(Selenium3)
【2021】UI自动化测试框架(Selenium3)
-
学院
thinkphp5.1博客后台实战视频
thinkphp5.1博客后台实战视频
-
博客
【信息学奥赛一本通】1020:打印ASCII码
【信息学奥赛一本通】1020:打印ASCII码
-
下载
南京大学《软件需求工程》期末考试试卷(部分答案).pdf
南京大学《软件需求工程》期末考试试卷(部分答案).pdf
-
学院
性能测试面面观
性能测试面面观
-
博客
一,linux sdio总线简介
一,linux sdio总线简介
-
学院
UnitySocket异步聊天室
UnitySocket异步聊天室
-
博客
从零开始刷力扣(七十五)——647. 回文子串
从零开始刷力扣(七十五)——647. 回文子串
-
学院
FFmpeg4.3系列之26:视频监控之H265多路摄像头播控项目实战
FFmpeg4.3系列之26:视频监控之H265多路摄像头播控项目实战
-
学院
阿里云云计算ACP考试必备教程
阿里云云计算ACP考试必备教程
-
学院
【数据分析-随到随学】数据分析建模和预测
【数据分析-随到随学】数据分析建模和预测