没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论















Python利用利用FFT进行简单滤波的实现进行简单滤波的实现
今天小编就为大家分享一篇Python利用FFT进行简单滤波的实现,具有很好的参考价值,希望对大家有所帮助。一起跟随小
编过来看看吧
1、流程、流程
大体流程如下,无论图像、声音、ADC数据都是如下流程:
(1)将原信号进行FFT;
(2)将进行FFT得到的数据去掉需要滤波的频率;
(3)进行FFT逆变换得到信号数据;
2、算法仿真、算法仿真
2.1 生成数据:
#采样点选择1400个,因为设置的信号频率分量最高为600Hz,根据采样定理知采样频率要大于信号频率2倍,所以这里设置采样频率为1400Hz(即一秒内有1400个采样点)
x=np.linspace(0,1,1400)
#设置需要采样的信号,频率分量有180,390和600
y=2*np.sin(2*np.pi*180*x) + 3*np.sin(2*np.pi*390*x)+4*np.sin(2*np.pi*600*x)
2.2 对生成的数据进行FFT变换
yy=fft(y) #快速傅里叶变换
yf=abs(fft(y)) # 取模
yf1=abs(fft(y))/((len(x)/2)) #归一化处理
yf2 = yf1[range(int(len(x)/2))] #由于对称性,只取一半区间
2.3显示转换结果:
显示原始FFT模值:
#混合波的FFT(双边频率范围)
plt.figure(2)
plt.plot(xf,yf,'r') #显示原始信号的FFT模值
plt.title('FFT of Mixed wave(two sides frequency range)',fontsize=7,color='#7A378B') #注意这里的颜色可以查询颜色代码表
显示原始FFT归一化后的模值:
#混合波的FFT(归一化)
plt.figure(3)
plt.plot(xf1,yf1,'g')
plt.title('FFT of Mixed wave(normalization)',fontsize=9,color='r')
由于对称,只取一半区间进行显示
plt.figure(4)
plt.plot(xf2,yf2,'b')
资源评论


weixin_38699830
- 粉丝: 6
- 资源: 973
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


安全验证
文档复制为VIP权益,开通VIP直接复制
