基于基于LabVIEW和和Matlab混合编程的小波去噪方法混合编程的小波去噪方法
信号降噪是信号处理领域的经典问题之一。传统的降噪方法主要包括线性滤波方法和非线性滤波方法,滤波器
在工作时对信号进行筛选,只让特定频段的信号通过。当信号中的有用成分和噪声成分各占不同频带,可以将
噪声成分有效除去。
0 引言引言
信号降噪是信号处理领域的经典问题之一。传统的降噪方法主要包括线性滤波方法和非线性滤波方法,滤波器在工作时对信号
进行筛选,只让特定频段的信号通过。当信号中的有用成分和噪声成分各占不同频带,可以将噪声成分有效除去。但如果信号
和噪声的频谱重叠,则经典滤波器将不起作用。这些滤波器按滤波的频段可分为高通、低通及带通滤波器,根据设计滤波器的
思想可以把滤波器分为巴特沃斯滤波器、贝塞尔滤波器、椭圆滤波器及切比雪夫滤波器等。
此外,传统的滤波器降噪方法的不足在于使信号变换后熵增加,无法刻画信号的非平稳性并且无法得到信号的相关性。为了克
服上述缺点,采用小波变换来解决信号降噪的方法应用越来越广泛。但是,由于小波变换数学理论较深,对于初学者而言,使
用传统的C语言等编程方法,编程难度很大。本文采用LabVIEW 和Matlab 混合编程的方法,将LabVIEW 完美的图形编程技术
和Matlab强大的数学解算功能结合起来,实现了小波降噪的数学建模和信号图像显示。
1 小波变换原理小波变换原理
小波变换的理论主要包括连续小波变换、离散小波变换和多分辨分析。
1.1 连续小波变换连续小波变换
按如下方式平移和伸缩而生成的函数族 {ψ a,b } 叫分析小波或连续小波(Continue Wavelet Transform,CWT),ψ 称为基本小
波。
任意函数在某一尺度a 、平移点b 上的小波变换系数,实质上表征的是在b 位置处,时间段2aΔψ 上包含在中心频率为ω* a ,带
宽为2Δψ - /a 频窗内的频率分量大小,随着尺度a 的变化,对应窗口中心频率为ω* a 及窗口宽度2Δψ - /a 也发生变化。
1.2 离散小波变换离散小波变换
在实际应用中,一般分析的信号都是经过离散采样后得到的离散时间序列,需要把连续小波及其变换离散化,以进行数字信号
处理。具体作法是通过对其伸缩尺度因子a 和平移因子b 的采样而离散化。
式中:m,n 分别称为频率范围指数和时间步长变化指数。
在连续小波变换Wψ f (a,b) 中,由于a,b 是连续变化的,它是高冗余的,只要母小波ψ(t) 满足容许条件,则可由Wψ f (a,b) 完
全恢复原信号f (t) .对于离散小波变换,由于对a,b 进行了离散采样,为了使Wψ f (m,n) 包含足够的信息以恢复原信号f (t) ,就需
要对变换使用的母小波作出更严格的限制。