没有合适的资源?快使用搜索试试~ 我知道了~
使用pandas读取csv文件的指定列方法
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
59 下载量 160 浏览量
2020-09-20
14:32:26
上传
评论 1
收藏 45KB PDF 举报
温馨提示


试读
2页
下面小编就为大家分享一篇使用pandas读取csv文件的指定列方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
资源推荐
资源详情
资源评论












使用使用pandas读取读取csv文件的指定列方法文件的指定列方法
下面小编就为大家分享一篇使用pandas读取csv文件的指定列方法,具有很好的参考价值,希望对大家有所帮
助。一起跟随小编过来看看吧
根据教程实现了读取csv文件前面的几行数据,一下就想到了是不是可以实现前面几列的数据。经过多番尝试总算试出来了一
种方法。
之所以想实现读取前面的几列是因为我手头的一个csv文件恰好有后面几列没有可用数据,但是却一直存在着。原来的数据如
下:
GreydeMac-mini:chapter06 greyzhang$ cat data.csv
1,name_01,coment_01,,,,
2,name_02,coment_02,,,,
3,name_03,coment_03,,,,
4,name_04,coment_04,,,,
5,name_05,coment_05,,,,
6,name_06,coment_06,,,,
7,name_07,coment_07,,,,
8,name_08,coment_08,,,,
9,name_09,coment_09,,,,
10,name_10,coment_10,,,,
11,name_11,coment_11,,,,
12,name_12,coment_12,,,,
13,name_13,coment_13,,,,
14,name_14,coment_14,,,,
15,name_15,coment_15,,,,
16,name_16,coment_16,,,,
17,name_17,coment_17,,,,
18,name_18,coment_18,,,,
19,name_19,coment_19,,,,
20,name_20,coment_20,,,,
21,name_21,coment_21,,,,
如果使用pandas读取出全部的数据,打印的时候会出现以下结果:
In [41]: data = pd.read_csv('data.csv')
In [42]: data
Out[42]:
1 name_01 coment_01 Unnamed: 3 Unnamed: 4 Unnamed: 5 Unnamed: 6
0 2 name_02 coment_02 NaN NaN NaN NaN
1 3 name_03 coment_03 NaN NaN NaN NaN
2 4 name_04 coment_04 NaN NaN NaN NaN
3 5 name_05 coment_05 NaN NaN NaN NaN
4 6 name_06 coment_06 NaN NaN NaN NaN
5 7 name_07 coment_07 NaN NaN NaN NaN
6 8 name_08 coment_08 NaN NaN NaN NaN
7 9 name_09 coment_09 NaN NaN NaN NaN
8 10 name_10 coment_10 NaN NaN NaN NaN
9 11 name_11 coment_11 NaN NaN NaN NaN
10 12 name_12 coment_12 NaN NaN NaN NaN
11 13 name_13 coment_13 NaN NaN NaN NaN
12 14 name_14 coment_14 NaN NaN NaN NaN
13 15 name_15 coment_15 NaN NaN NaN NaN
14 16 name_16 coment_16 NaN NaN NaN NaN
15 17 name_17 coment_17 NaN NaN NaN NaN
16 18 name_18 coment_18 NaN NaN NaN NaN
17 19 name_19 coment_19 NaN NaN NaN NaN
18 20 name_20 coment_20 NaN NaN NaN NaN
19 21 name_21 coment_21 NaN NaN NaN NaN
所说在学习的过程中这并不会给我带来什么障碍,但是在命令行终端界面呆久了总喜欢稍微清爽一点的风格。使用read_csv
的参数usecols能够在一定程度上减少这种混乱感。
In [45]: data = pd.read_csv('data.csv',usecols=[0,1,2,3])
In [46]: data
Out[46]:
1 name_01 coment_01 Unnamed: 3
0 2 name_02 coment_02 NaN
1 3 name_03 coment_03 NaN
2 4 name_04 coment_04 NaN
3 5 name_05 coment_05 NaN
4 6 name_06 coment_06 NaN
5 7 name_07 coment_07 NaN
资源评论


weixin_38689338
- 粉丝: 9
- 资源: 975
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


安全验证
文档复制为VIP权益,开通VIP直接复制
