多项式回归模型是一种常用的非线性回归方法.由于在多项式回归模型中,自变量之间往往存在较强的相关关系,采用普通最小二乘回归方法来估计回归系数会存在较大的计算误差.为了提高多项式回归模型的预测准确性和可靠性,提出一种基于Gram-Schmidt过程进行多项式回归的建模方法,可以实现自变量集合的正交化,克服自变量集合多重共线对回归建模的不良影响,从而有效地运用最小二乘建立回归模型.同时可以进行信息筛选有效选取对因变量有显著解释作用的自变量,排除自变量中的冗余信息.采用仿真数据分析,检验了该方法的有效性.