模拟技术中的数字滤波抗干扰技术在A/D转换中的应用


-
1引言 仪器仪表设备在现场测试过程中,由于生产变量的测试数据对生产过程具有重要的意义,因此对各种物理量测试数据精度要求是比较高的。 在前向测试通道上采用的抗干扰措施中,滤波方法是抑制干扰的一种有效途径。在工业现场中,可利用硬件滤波器电路或软件滤波器算法提高测试数据的准确性。硬件滤波措施是使用较多的一种方法,技术比较成熟,但同时也增加了设备,提高了成本,而且电子设备的增加有可能带来新的干扰源。而采用软件滤波算法不需增加硬件设备,可靠性高,功能多样,使用灵活,具有许多硬件滤波措施所不具备的优点,当然它需要占一定的运行时间。 2常用的几种软件滤波方法 (1)中值滤波法:即每次取N个A

131KB
A/D转换中的数字滤波抗干扰技术
2020-08-11仪器仪表设备在现场测试过程中,由于生产变量的测试数据对生产过程具有重要的意义,因此对各种物理量测试数据精度要求是比较高的。
7.77MB
数据采集与处理技术
2014-09-24数据采集技术连续信号的采样问题、采样定理的定义、采样定理的实际应用、频率混淆原因及解决措施。 2.了解模/数和数/模的转换过程、典型模/数和数/模转换器的工作原理;量化过程、误差、编码。 3.了解数据采集系统的组成、系统的抗干扰措施。 4.了解典型A/D、D/A和双8225接口板的使用。 5.了解模拟量采集程序和数字量采集程序的编程方法。 6 .采样数据的数字滤波、采样数据中奇异项的剔除及采样数据的平滑处理
13.34MB
单片机应用技术选编(8).(北航出版.何立民)
2016-06-09书名:《单片机应用技术选编(8)》(北京航空航天大学出版社.何立民) PDF格式扫描版,全书分为8章,共616页。2000年出版。 内容简介 《单片机应用技术选编》系列图书是汇集了多年间国内主要期刊杂志中有关单片机应用系统的通用技术、实用技术以及相关领域中的新器件、新技术等技术文摘。反映了当时国内单片机应用、开发的先进水平,具有重要参考价值。本书是第8卷,选编了1999年587篇文章。其中全文编辑112篇,其余475篇摘要编辑。 注:原书无书签。为了方便阅读,本人在上传前添加了完整详细的书签。 目 录 第一章 单片机综合应用技术 1.1 单片机技术的发展与单片机应用的广泛选择
27.93MB
单片机应用技术选编(6).(北航出版.何立民)
2016-06-09书名:《单片机应用技术选编(6)》(北京航空航天大学出版社.何立民) PDF格式扫描版,全书分为8章,共603页。1998年8月出版。 内容简介 《单片机应用技术选编》系列图书是汇集了多年间国内主要期刊杂志中有关单片机应用系统的通用技术、实用技术以及相关领域中的新器件、新技术等技术文摘。反映了当时国内单片机应用、开发的先进水平,具有重要参考价值。本书是第6卷,选编了1997年499篇文章。其中全文编辑115篇,其余384篇摘要编辑。 注:原书无书签。为了方便阅读,本人在上传前添加了完整详细的书签。 目 录 第一章 单片机综合应用技术 1.1 存储器技术的发展及趋势 1.2
24.39MB
单片机应用技术选编(5).(北航出版.何立民)
2016-06-09书名:《单片机应用技术选编(5)》(北京航空航天大学出版社.何立民) PDF格式扫描版,全书分为8章,共584页。2001年5月出版。 内容简介 《单片机应用技术选编》系列图书是汇集了多年间国内主要期刊杂志中有关单片机应用系统的通用技术、实用技术以及相关领域中的新器件、新技术等技术文摘。反映了当时国内单片机应用、开发的先进水平,具有重要参考价值。本书是第5卷,选编了1996年376篇文章。其中全文编辑124篇,其余252篇摘要编辑。 注:原书无书签。为了方便阅读,本人在上传前添加了完整详细的书签。 目 录 第一章 单片机的综合应用技术 1.1 MCS251微控制器的结构简介
630KB
用过采样和求均值提高ADC分辨率
2009-05-13用过采样和求均值提高ADC分辨率 过采样Σ-△ADC是近年来得到迅速发展的一种A/D转换方法,它是以极高的采样速率将模拟信号转化为1位高速数据流,通过噪声整形、数字滤波等方法来提高有效分辨率,然后对ADC输出进行采样抽取和梳值,实现正常采样速率下的A/D转换结果.由于Σ-△ADC中大量地采用数字电路,它的制造成本非常低.同时,它又具有分辨率高,线性度好,抗干扰能力强等一系列优点,因而得到越来越广泛的应用.
18.68MB
单片机应用技术选编(9).(北航出版.何立民)
2016-06-09书名:《单片机应用技术选编(9)》(北京航空航天大学出版社.何立民) PDF格式扫描版,全书分为9章,共737页。2000年出版。 内容简介 《单片机应用技术选编》系列图书是汇集了多年间国内主要期刊杂志中有关单片机应用系统的通用技术、实用技术以及相关领域中的新器件、新技术等技术文摘。反映了当时国内单片机应用、开发的先进水平,具有重要参考价值。本书是第9卷,选编了2000-2001年间443篇文章。其中全文编辑120篇,其余323篇摘要编辑。 注:原书无书签。为了方便阅读,本人在上传前添加了完整详细的书签。 目 录 第一章 专题论述 1.1 集成电路进入片上系统时代(2) 1.2 系统集成芯片综述(10) 1.3 Java嵌入技术综述(18) 1.4 Java的线程机制(23) 1.5 嵌入式系统中的JTAG接口编程技术(29) 1.6 EPAC器件技术概述及应用(37) 1.7 VHDL设计中电路简化问题的探讨(42) 1.8 8031芯片主要模块的VHDL描述与仿真(48) 1.9 ISP技术在数字系统设计中的应用(59) 1.10 单片机单总线技术(64) 1.11 智能信息载体iButton及其应用(70) 1.12 基于单片机的高新技术产品加密方法探讨(76) 1.13 新一代私钥加密标准AES进展与评述(80) 1.14 基于单片机的实时3DES加密算法的实现(86) 1.15 ATA接口技术(90) 1.16 基于IDE硬盘的高速数据存储器研究(98) 1.17 模拟比较器的应用(102) 第二章 综合应用技术 2.1 闪速存储器硬件接口和程序设计中的关键技术(126) 2.2 51单片机节电模式的应用(131) 2.3 分布式实时应用的两个重要问题(137) 2.4 分布式运算单元的原理及其实现方法(141) 2.5 用PLD器件设计逻辑电路时的竞争冒险现象(147) 2.6 IRIGB格式时间码解码接口卡电路设计(150) 2.7 一种基于单片机时频信号处理的实用方法(155) 2.8 射频接收系统晶体振荡电路的设计与分析(161) 2.9 揭开ΣΔ ADC的神秘面纱(166) 2.10 过采样高阶A/D转换器的硬件实现(172) 2.11 A/D转换的计算与编程(176) 2.12 一种提高单片机内嵌式A/D分辨力的方法(179) 2.13 单片微型计算机多字节浮点快速相对移位法开平方运算的实现(182) 2.14 单片微型计算机多字节浮点除法快速扫描运算的实现(186) 2.15 DSP芯片与触摸屏的接口控制(188) 第三章 操作系统与软件技术 3.1 嵌入式系统中的实时操作系统(192) 3.2 嵌入式系统的开发利器——Windows CE操作系统(197) 3.3 介绍一种实时操作系统DSP/BIOS(203) 3.4 实时操作系统用于嵌入式应用系统的设计(212) 3.5 实时Linux操作系统初探(217) 3.6 Linux网络设备驱动程序分析与设计(223) 3.7 在51系列单片机上实现非抢先式消息驱动机制的RTOS(229) 3.8 用结构化程序设计思想指导汇编语言开发(236) 3.9 单片机高级语言C51与汇编语言ASM51的通用接口(240) 3.10 ASM51无参数化调用C51函数的实现(245) 3.11 TMS320C3X的汇编语言和C语言及混合编程技术(249) 3.12 TMS320C6000嵌入式系统优化编程的研究(254) 3.13 TMS320C54X软件模拟实现UART技术(260) 3.14 W78E516及其在系统编程的实现(265) 3.15 键盘键入信号软件处理方法探讨(272) 3.16 单片机系统中数字滤波的算法(276) 第四章 网络、通信与数据传送 4.1 实时单片机通信网络中的内存管理(284) 4.2 CRC16编码在单片机数据传输系统中的实现(288) 4.3 在VC++中用ActiveX控件实现与单片机的串行通信(293) 4.4 利用Windows API函数构造C++类实现串行通信(298) 4.5 用Win32 API实现PC机与多单片机的串行通信(304) 4.6 GPS接收机与PC机串行通信技术的开发与应用(311) 4.7 TCP/IP协议问题透析(316) 4.8 单片机的MODEM通信(328) 4.9 无线串行接口电路设计(335) 4.10 通用无线数据传输电路设计(340) 4.11 FX909在无线高速MODEM中的应用(343) 4.12 蓝牙——短距离无线连接新技术(348) 4.13 蓝牙技术——一种短距离的无线连接技术(351) 4.14 蓝牙芯片及其应用(357) 4.15 BlueCoreTM01蓝牙芯片的特性与应用(361) 4.16 内嵌微控制器的无线数据发射器的特性及应用(365) 第五章 新器件及其应用技术 5.1 一种全新结构的微控制器——Triscend E5(372) 5.2 PSD8XXF的在系统编程技术(376) 5.3 PSD813F1及其接口编程技术(382) 5.4 一种优越的可编程逻辑器件——ISP器件(387) 5.5 ISPPLD原理及其设计应用(393) 5.6 ispPAC10在系统可编程模拟电路及其应用(397) 5.7 在系统可编程器件ispPAC80及其应用(404) 5.8 采用ispLSI1016设计高精度光电码盘计数器(408) 5.9 基于ADμC812的一种仪表开发平台(413) 5.10 基于P87LPC764的ΣΔ ADC应用设计方法(418) 5.11 MP3解码芯片组及其应用(431) 5.12 射频IC卡E5550原理及应用(434) 5.13 HD7279A键盘显示驱动芯片及应用(439) 5.14 基于SPI接口的ISD4104系列语音录放芯片及其应用(444) 5.15 解决DS1820通信误码问题的方法(450) 5.16 数字电位器在测量放大器中的应用(455) 第六章 总线及其应用技术 6.1 按平台模式设计的虚拟I2C总线软件包VIIC(462) 6.2 虚拟I2C总线软件包的开发及其应用(470) 6.3 RS485总线的理论与实践(479) 6.4 RS232至RS485/RS422接口的智能转换器(484) 6.5 实用隔离型RS485通信接口的设计(489) 6.6 几种RS485接口收发方向转换方法(495) 6.7 LonWorks总线技术及发展(498) 6.8 LonWorks网络监控的简单实现(505) 6.9 现场总线CANbus与RS485之间透明转换的实现(509) 6.10 居室自动化系统中的X10和CE总线(513) 6.11 通用串行总线USB(519) 6.12 USB2.0技术概述(524) 6.13 带通用串行总线USB接口的单片机EZUSB(530) 6.14 嵌入式处理器中的慢总线技术应用(536) 6.15 SPI串行总线在单片机8031应用系统中的设计与实现(540) 第七章 可靠性及安全性技术 7.1 软件可靠性及其评估(546) 7.2 网络通信中的基本安全技术(554) 7.3 数字语音混沌保密通信系统及硬件实现(560) 7.4 伪随机序列及PLD实现在程序和系统加密中的应用(565) 7.5 增强单片机系统可靠性的若干措施(569) 7.6 FPGA中的空间辐射效应及加固技术(573) 7.7 一种双机备份系统的软实现(577) 7.8 计算机系统容错技术的应用(581) 7.9 容错系统中的自校验技术及实现方法(585) 7.10 基于MAX110的容错数据采集系统的设计(589) 7.11 冗余式时钟源电路(593) 7.12 微机控制系统的抗干扰技术应用(599) 7.13 单片开关电源瞬态干扰及音频噪声抑制技术(604) 7.14 单片机应用系统程序运行出轨问题研究(608) 7.15 分布式系统故障卷回恢复技术研究与实践(613) 第八章 典型应用实例 8.1 基于单片机系统采用DMA块传输方式实现高速数据采集(620) 8.2 GPS数据采集卡的设计(624) 8.3 一种新型非接触式IC卡识别系统研究(629) 8.4 自适应调整增益的单片机数据采集系统(633) 8.5 利用光纤发射/接收器对实现远距离高速数据采集(639) 8.6 一种频率编码键盘的设计与实现(645) 8.7 高准确度时钟程序算法(649) 8.8 旋转编码器的抗抖动计数电路(652) 8.9 利用X9241实现高分辨率数控电位器(656) 8.10 基于AD2S80A的高精度位置检测系统及其在机器人控制中的应用(661)
11.20MB
全国大学生电子设计大赛培训教程(全)
2013-04-21全国大学生电子设计大赛培训教程(全),全国大学生电子设计竞赛训练教程 目 录 第1章 电子设计竞赛题目与分析 1.1 全国大学生电子设计竞赛简介 1.2 全国大学生电子设计竞赛命题原则及要求 1.2.1 命题范围 1.2.2 题目要求 1.2.3 题目类型 1.2.4 命题格式 1.2.5 征题办法 1.3 电子设计竞赛的题目分析 1.3.1 电源类题目分析 1.3.2信号源类题目分析 1.3.3无线电类题目分析 1.3.4放大器类题目分析 1.3.5仪器仪表类题目分析 1.3.6数据采集与处理类题目分析 1.3.7控制类题目分析 第2章 电子设计竞赛基础训练 2.1 电子元器件的识别 2.1.1 电阻器 2.1.2 电位器 2.1.3 电容器 2.1.4 电感器 2.1.5 半导体分立器件 2.1.6 半导体集成电路 2.1.7 表面贴装元件 2.2 装配工具及方法 2.2.1 装配工具 2.2.2 焊接材料 2.2.3 焊接工艺和方法 2.3 印制电路板设计与制作 2.3.1 印制电路板设计 2.3.2 印制电路板的制作 第三章 单元电路训练 3.1集成直流稳压电源的设计 3.1.1 直流稳压电源的基本原理 3.1.2 三端固定式正压稳压器 3.1.3 三端固定式负压稳压器 3.1.4 三端可调式稳压器 3.1.5 正、负输出稳压电源 3.1.6 斩波调压电源电路 3.1.7 精密稳压电源电路 3.1.8 DC-DC电源电压 3.1.9 受控稳压电源 3.1.10 LCD显示器用负压电源 3.2 运算放大器电路 3.2.1 运算放大器基本特性 3.2.2 基本运放应用电路 3.2.3 测量放大电路 3.3信号产生电路 3.3.1 分立模拟电路构成矩形波产生电路 3.3.2 正弦波产生电路 3.3.3三角波产生电路 3.3.4 多种信号发生电路 3.4信号处理电路 3.4.1 有源滤波电路 3.4.2 电压/频率、频率/电压变换电路 3.4.3 电流-电压变换电路 3.5 声音报警电 路 3.5.1 分立元件制作的声音报警电路 3.5.2 与单片机接口的声音报警电路与程序 3.5.3 与可编程逻辑器件接口的声音报警电路与程序 3.6 传感器及其应用电路 3.6.1 传感器种类介绍 3.6.2 霍尔传感器与应用电路 3.6.3 金属传感器与应用电路 3.6.4 温度传感器与应用电路 3.6.5 光电传感器与应用电路 3.6.6 超声波传感器与应用电路 3.7 功率驱动电路 3.7.1 直流电机驱动接口电路 3.7.2 步进电机及驱动电路 3.7.3 继电器电路 3.7.4 固态继电器电路 3.8显示电路 3.8.1 LED显示器接口电路 3.8.2 LCD显示器的控制 3.9 A/D转换器 3.9.1 A/D转换器的分类及简介 3.9.2 A/D转换器的主要技术指标 3.9.3 A/D转换器及其相应接口电路选择原则 3.9.4 常用AD转换器 3.9.5 A/D接口电路及程序设计 3.10 D/A转换器 3.10.1 D/A转换器分类及简介 3.10.2 D/A转换器的主要技术指标 3.10.3 D/A转换器选用原则 3.10.4 常用D/A转换器 3.10.5 D/A接口电路及程序设计 第4章 单片机最小系统设计制作训练 4.1 单片机最小系统设计制作 4.1.1 单片机最小系统电路板硬件设计 4.1.2 单片机最小系统电路板测试程序设计 4.2 通用键盘显示电路设计制作 4.2.1 通用可编程键盘和显示器的接口电路芯片8279 4.2.2 基于8279 的通用键盘和显示电路硬件设计 4.2.3 8279与单片机最小系统电路板的连接 4.2.4 基于8279 的通用键盘和显示电路程序设计 4.3 单片机与液晶显示电路接口电路及程序设计 4.3.1 MDLS点阵字符型液晶显示模块模块及程序设计 4.3.2 LMA97S005AD点阵图形型液晶显示模块及程序设计 4.4 单片机与D/A及A/D转换电路设计制作 4.4.1 D/A转换电路及程序设计 4.4.2 A/D转换电路及程序设计 第5章 可编程逻辑器件系统设计制作训练 5.1 FPGA最小系统的设计制作 5.1.1 Xilinx公司的FPGA器件 5.1.2 FPGA最小系统电路设计 5.1.3 FPGA最小系统印制板设计 5.1.4 FPGA最小系统电源电路的设计 5.2 FPGA最小系统配置电路的设计 5.2.1 使用PC并行口配置FPGA 5.2.2 使用单片机配置FPGA 5.2.3 Spartan-Ⅱ器件的配置 5.2.4 各种模式的配置方式 5.3 Modelsim仿真工具的使用 5.3.1设计流程 5.3.2 功能仿真和时序仿真 5.3.3 功能仿真
9KB
电子设计.doc
2019-05-28(文件太大无法上传全部,下载的是网盘链接(内含全部文件)!!!)部分资料清单: 0001、PC 机与单片机通信(RS232 协议) 0002、C与VB语言联合在proteus上仿真 0003、IC卡读写仿真 0004、Integrate就医服务平台论文 0005、PC红外线遥控器上位机及电路图 0006、PLC电梯控制系统论文 0007、VB上位机程序控制DS1302时钟的proteus仿真 0008、VB上位机与18b20下位机 0009、八路扫描式抢答器设计论文 0010、比较全面的手机原理资料 0011、采用实时时钟芯片DS1302+AT89C2051的红外遥控LED电子钟 0012、51单片机超声波测距程序 0013、单片机C语言程序设计实训100例——基于8051+Proteus仿真 0014、电机转速测量系统论文 0015、多功能出租车计价器设计论文资料 0016、多功能数字时钟设计论文资料 0017、肺活量测量仪设计论文资料 0018、高保真音响设计制作论文资料 0019、高灵敏无线探听器电路资料 0020、给初学51单片机的40个实验汇编语言对应C语言加说明 0021、国旗升降系统程序及原理图资料 0022、基于51单片机的电子万年历的设计论文资料 0023、基于51单片机的数字频率计设计论文资料 0024、基于AVR及无线收发模块的脉搏监测系统设计论文资料 0025、基于CPLD的三相多波形函数发生器设计论文资料 0026、基于DDS的信号源设计论文资料 0027、基于FPGA多通道采样系统设计论文资料 0028、基于GSM短信模块的家庭防盗报警系统论文资料 0029、基于IGBT的变频电源设计论文资料 0030、基于PLL信号发生器的设计论文资料 0031、基于PSTN的家用电器远程控制系统设计论文资料 0032、基于USB的经络信号的检测系统与设计论文资料 0033、基于USB接口的温度控制器设计资料 0034、基于单片机的电集中抄表设计论文资料 0035、基于单片机的简易逻辑分析仪设计论文资料 0036、基于单片机的数字温度计设计论文资料 0037、基于单片机的数字钟设计论文资料 0038、基于单片机的水温控制系统PDF资料 0039、基于单片机的水温控制系统设计论文资料 0040、基于单片机的作息时间控制钟系统资料 0041、基于单片机的温度控制系统论文资料 0042、基于单片机控制的交通灯毕业设计资料 0043、基于单片机控制的开关电源论文资料 0044、基于网络的虚拟仪器测试系统论文资料 0045、家用音响设计制作论文资料 0046、具有定时功能的八路数显抢答器的设计论文 0047、开关电源论文资料 0048、自来水厂全自动恒压供水监控系统论文资料 0049、量程自动切换数字电压表proteus仿真+程序资料 0050、牧场智能挤奶与综合信息管理系统论文资料 0051、汽车实验台电路控制系统论文 0052、汽车尾灯控制电路设计论文资料 0053、抢答器论文及其proteus仿真资料 0054、全遥控数字音量控制的D 类功率放大器论文资料 0055、ATMEGA16单片机实现的数控频率计原理图及其程序论文 0056、数控云台proteus仿真+程序资料 0057、AT89S52单片机实现数控直流电流源论文资料 0058、AT89S52单片机数控直流电源原理图程序资料 0059、数控直流稳压电源完整论文资料 0060、数控直流稳压电源proteus仿真+程序资料 0061、数字示波器的制作 0062、数字式调频收音机设计论文资料 0063、数字式秒表文档论文资料 0064、数字万年历设计论文资料 0065、数字温度计设计论文资料 0066、水库控制系统设计论文资料 0067、同步电机模型的MATLAB仿真论文资料 0068、危险气体泄露报警器设计论文资料 0069、微型打印机控制电路的设计论文资料 0070、温度监控系统的设计论文资料 0071、温度控制系统设计论文资料 0072、无线调频发射器的设计论文资料 0073、无线视频监控系统设计毕业论文资料 0074、无线鼠标设计论文资料 0075、无线数据收发系统毕业论文资料 0076、无线遥控盆腔治疗仪论文资料 0077、无线遥控设计资料 0078、无线语音遥控智能车论文资料 0079、消防智能电动车设计与制作论文资料 0080、悬挂运动控制系统论文资料 0081、遥控系统的设计资料 0082、液体点滴速度监控装置资料 0083、一种智能频率计的设计与制作(AVR)proteus仿真+程序资料 0084、音频信号分析仪毕业设计论文资料 0085、应用电子、继电线路设计论文资料 0086、用单片机实现温度远程显示论文资料 0087、远程温度控制系统毕业
14KB
布线规则.txt
2019-05-233 1. 一般规则 1.1 PCB板上预划分数字、模拟、DAA信号布线区域。 1.2 数字、模拟元器件及相应走线尽量分开并放置於各自的布线区域内。 1.3 高速数字信号走线尽量短。 1.4 敏感模拟信号走线尽量短。 1.5 合理分配电源和地。 1.6 DGND、AGND、实地分开。 1.7 电源及临界信号走线使用宽线。 1.8 数字电路放置於并行总线/串行DTE接口附近,DAA电路放置於电话线接口附近。 2. 元器件放置 2.1 在系统电路原理图中: a) 划分数字、模拟、DAA电路及其相关电路; b) 在各个电路中划分数字、模拟、混合数字/模拟元器件; c) 注意各IC芯片电源和信号引脚的定位。 2.2 初步划分数字、模拟、DAA电路在PCB板上的布线区域(一般比例2/1/1),数字、模拟元器件及其相应走线尽量远离并限定在各自的布线区域内。 Note:当DAA电路占较大比重时,会有较多控制/状态信号走线穿越其布线区域,可根据当地规则限定做调整,如元器件间距、高压抑制、电流限制等。 2.3 初步划分完毕後,从Connector和Jack开始放置元器件: a) Connector和Jack周围留出插件的位置; b) 元器件周围留出电源和地走线的空间; c) Socket周围留出相应插件的位置。 2.4 首先放置混合型元器件(如Modem器件、A/D、D/A转换芯片等): a) 确定元器件放置方向,尽量使数字信号及模拟信号引脚朝向各自布线区域; b) 将元器件放置在数字和模拟信号布线区域的交界处。 2.5 放置所有的模拟器件: a) 放置模拟电路元器件,包括DAA电路; b) 模拟器件相互靠近且放置在PCB上包含TXA1、TXA2、RIN、VC、VREF信号走线的一面; c) TXA1、TXA2、RIN、VC、VREF信号走线周围避免放置高噪声元器件; d) 对於串行DTE模块,DTE EIA/TIA-232-E 系列接口信号的接收/驱动器尽量靠近Connector并远离高频时钟信号走线,以减少/避免每条线上增加的噪声抑制器件,如阻流圈和电容等。 2.6 放置数字元器件及去耦电容: a) 数字元器件集中放置以减少走线长度; b) 在IC的电源/地间放置0.1uF的去耦电容,连接走线尽量短以减小EMI; c) 对并行总线模块,元器件紧靠 Connector边缘放置,以符合应用总线接口标准,如ISA总线走线长度限定在2.5in; d) 对串行DTE模块,接口电路靠近Connector; e) 晶振电路尽量靠近其驱动器件。 2.7 各区域的地线,通常用0 Ohm电阻或bead在一点或多点相连。 3. 信号走线 3.1 Modem信号走线中,易产生噪声的信号线和易受干扰的信号线尽量远离,如无法避免时要用中性信号线隔离。 Modem易产生噪声的信号引脚、中性信号引脚、易受干扰的信号引脚如下表所示: 3.2 数字信号走线尽量放置在数字信号布线区域内; 模拟信号走线尽量放置在模拟信号布线区域内; (可预先放置隔离走线加以限定,以防走线布出布线区域) 数字信号走线和模拟信号走线垂直以减小交叉耦合。 3.3 使用隔离走线(通常为地)将模拟信号走线限定在模拟信号布线区域。 a) 模拟区隔离地走线环绕模拟信号布线区域布在PCB板两面,线宽50-100mil; b) 数字区隔离地走线环绕数字信号布线区域布在PCB板两面,线宽50-100mil,其中一面PCB板边应布200mil宽度。 3.4 并行总线接口信号走线线宽>10mil(一般为12-15mil),如/HCS、/HRD、/HWT、/RESET。 3.5 模拟信号走线线宽>10mil(一般为12-15mil),如MICM、MICV、SPKV、VC、VREF、TXA1、TXA2、RXA、TELIN、TELOUT。 3.6 所有其它信号走线尽量宽,线宽>5mil(一般为 10mil),元器件间走线尽量短(放置器件时应预先考虑)。 3.7 旁路电容到相应IC的走线线宽>25mil,并尽量避免使用过孔。 3.8 通过不同区域的信号线(如典型的低速控制/状态信号)应在一点(首选)或两点通过隔离地线。如果走线只位於一面, 隔离地线可走到PCB的另一面以跳过信号走线而保持连续。 3.9 高频信号走线避免使用90度角弯转,应使用平滑圆弧或45度角。 3.10 高频信号走线应减少使用过孔连接。 3.11 所有信号走线远离晶振电路。 3.12 对高频信号走线应采用单一连续走线,避免出现从一点延伸出几段走线的情况。 3.13 DAA电路中,穿孔周围(所有层面)留出至少60mil的空间。 3.14 清除地线环路,以防意外电流回馈影响电源。 4. 电源 4.1 确定电源连接关系。 4.2 数字信号布线区域中,用10uF电解电容或钽电容与0.1uF瓷片电容并联後接在电源/地之间.在PCB板电源入口端和最远端各放置一处,以防电源尖峰脉冲引发的噪声干扰。 4.3 对双面板,在用电电路相同层面中,用两边线宽为 200mil的电源走线环绕该电路。(另一面须用数字地做相同处理) 4.4 一般地,先布电源走线,再布信号走线。 5. 地 5.1双面板中,数字和模拟元器件(除DAA)周围及下方未使用之区域用数字地或模拟地区域填充,各层面同类地区域连接在一起,不同层面同类地区域通过多个过孔相连:Modem DGND引脚接至数字地区域,AGND引脚接至模拟地区域;数字地区域和模拟地区域用一条直的空隙隔开。 5.2 四层板中,使用数字和模拟地区域覆盖数字和模拟元器件(除DAA);Modem DGND引脚接至数字地区域,AGND引脚接至模拟地区域;数字地区域和模拟地区域用一条直的空隙隔开。 5.3 如设计中须EMI过滤器,应在接口插座端预留一定空间,绝大多数EMI器件(Bead/电容)均可放置在该区域;未使用之区域用地区域填充,如有屏蔽外壳也须与之相连。 5.4 每个功能模块电源应分开。功能模块可分为:并行总线接口、显示、数字电路(SRAM、EPROM、Modem)和DAA等,每个功能模块的电源/地只能在电源/地的源点相连。 5.5 对串行DTE模块,使用去耦电容减少电源耦合,对电话线也可做相同处理。 5.6 地线通过一点相连,如可能,使用Bead;如抑制EMI需要,允许地线在其它地方相连。 5.7 所有地线走线尽量宽,25-50mil。 5.8 所有IC电源/地间的电容走线尽量短,并不要使用过孔。 6. 晶振电路 6.1 所有连到晶振输入/输出端(如XTLI、XTLO)的走线尽量短,以减少噪声干扰及分布电容对Crystal的影响。XTLO走线尽量短,且弯转角度不小於45度。(因XTLO连接至上升时间快,大电流之驱动器) 6.2 双面板中没有地线层,晶振电容地线应使用尽量宽的短线连接至器件上离晶振最近的DGND引脚,且尽量减少过孔。 6.3 如可能,晶振外壳接地。 6.4 在XTLO引脚与晶振/电容节点处接一个100 Ohm电阻。 6.5 晶振电容的地直接连接至 Modem的GND引脚,不要使用地线区域或地线走线来连接电容和Modem的GND引脚。 7. 使用EIA/TIA-232接口的独立Modem设计 7.1 使用金属外壳。 如果须用塑料外壳,应在内部贴金属箔片或喷导电物质以减小EMI。 7.2 各电源线上放置相同模式的Choke。 7.3 元器件放置在一起并紧靠EIA/TIA-232接口的Connector。 7.4 所有EIA/TIA-232器件从电源源点单独连接电源/地。电源/地的源点应为板上电源输入端或调压芯片的输出端。 7.5 EIA/TIA-232电缆信号地接至数字地。 针对模拟信号,再作一些详细说明: 模拟电路的设计是工程师们最头疼、但也是最致命的设计部分,尽管目前数字电路、大规模集成电路的发展非常迅猛,但是模拟电路的设计仍是不可避免的,有时也是数字电路无法取代的,例如 RF 射频电路的设计!这里将模拟电路设计中应该注意的问题总结如下,有些纯属经验之谈,还望大家多多补充、多多批评指正!... (1)为了获得具有良好稳定性的反馈电路,通常要求在反馈环外面使用一个小电阻或扼流圈给容性负载提供一个缓冲。 (2)积分反馈电路通常需要一个小电阻(约 560 欧)与每个大于 10pF 的积分电容串联。 (3)在反馈环外不要使用主动电路进行滤波或控制 EMC 的 RF 带宽,而只能使用被动元件(最好为 RC 电路)。仅仅在运放的开环增益比闭环增益大的频率下,积分反馈方法才有效。在更高的频率下,积分电路不能控制频率响应。 (4)为了获得一个稳定的线性电路,所有连接必须使用被动滤波器或其他抑制方法(如光电隔离)进行保护。 (5)使用 EMC 滤波器,并且与 IC 相关的滤波器都应该和本地的 0V 参考平面连接。 (6)在外部电缆的连接处应该放置输入输出滤波器,任何在没有屏蔽系统内部的导线连接处都需要滤波,因为存在天线效应。另外,在具有数字信号处理或开关模式的变换器的屏蔽系统内部的导线连接处也需要滤波。 (7)在模拟 IC 的电源和地参考引脚需要高质量的 RF 去耦,这一点与数字 IC 一样。但是模拟 IC 通常需要低频的电源去耦,因为模拟元件的电源噪声抑制比(PSRR)在高于 1KHz 后增加很少。在每个运放、比较器和数据转换器的模拟电源走线上都应该使用 RC 或 LC 滤波。电源滤波器的拐角频率应该对器件的 PSRR 拐角频率和斜率进行补偿,从而在整个工作频率范围内获得所期望的 PSRR 。 (8)对于高速模拟信号,根据其连接长度和通信的最高频率,传输线技术是必需的。即使是低频信号,使用传输线技术也可以改善其抗干扰性,但是没有正确匹配的传输线将会产生天线效应。 (9)避免使用高阻抗的输入或输出,它们对于电场是非常敏感的。 (10)由于大部分的辐射是由共模电压和电流产生的,并且因为大部分环境的电磁干扰都是共模问题产生的,因此在模拟电路中使用平衡的发送和接收(差分模式)技术将具有很好的 EMC 效果,而且可以减少串扰。平衡电路(差分电路)驱动不会使用 0V 参考系统作为返回电流回路,因此可以避免大的电流环路,从而减少 RF 辐射。 (11)比较器必须具有滞后(正反馈),以防止因为噪声和干扰而产生的错误的输出变换,也可以防止在断路点产生振荡。不要使用比需要速度更快的比较器(将 dV/dt 保持在满足要求的范围内,尽可能低)。 (12)有些模拟 IC 本身对射频场特别敏感,因此常常需要使用一个安装在 PCB 上,并且与 PCB 的地平面相连接的小金属屏蔽盒,对这样的模拟元件进行屏蔽。注意,要保证其散热条件 PCB布线规则2 连线精简原则 连线要精简,尽可能短,尽量少拐弯,力求线条简单明了,特别是在高频回路中,当然为了达到阻抗匹配而需要进行特殊延长的线就例外了,例如蛇行走线等。安全载流原则铜线的宽度应以自己所能承载的电流为基础进行设计,铜线的载流能力取决于以下因素:线宽、线厚(铜铂厚度)、允许温升等,下表给出了铜导线的宽度和导线面积以及导电电流的关系(军品标准),可以根据这个基本的关系对导线宽度进行适当的考虑。印制导线最大允许工作电(导线厚50um,允许温升10℃) 导线宽度(Mil) 导线电流(A) 10 1 15 1.2 20 1.3 25 1.7 30 1.9 50 2.6 75 3.5 100 4.2 200 7.0 250 8.3 相关的计算公式为: I=KT0.44A0.75 其中: K 为修正系数,一般覆铜线在内层时取0.024,在外层时取0.048; T 为最大温升,单位为℃; A 为覆铜线的截面积,单位为mil(不是mm,注意); I 为允许的最大电流,单位是A。 电磁抗干扰原则 电磁抗干扰原则涉及的知识点比较多,例如铜膜线的拐弯处应为圆角或斜角(因为高频时直角或者尖角的拐弯会影响电气性能)双面板两面的导线应互相垂直、斜交或者弯曲走线,尽量避免平行走线,减小寄生耦合等。 一、 通常一个电子系统中有各种不同的地线,如数字地、逻辑地、系统地、机壳地等,地线的设计原则如下: 1、 正确的单点和多点接地在低频电路中,信号的工作频率小于1MHZ,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地。当信号工作频率大于10MHZ 时,如果采用一点接地,其地线的长度不应超过波长的1/20,否则应采用多点接地法。 2、 数字地与模拟地分开 若线路板上既有逻辑电路又有线性电路,应尽量使它们分开。一般数字电路的抗干扰能力比较强,例如TTL 电路的噪声容限为0.4~0.6V,CMOS 电路的噪声容限为电源电压的0.3~0.45 倍,而模拟电路只要有很小的噪声就足以使其工作不正常,所以这两类电路应该分开布局布线。 3、 接地线应尽量加粗 若接地线用很细的线条,则接地电位会随电流的变化而变化,使抗噪性能降低。因此应将地线加粗,使它能通过三倍于印制板上的允许电流。如有可能接地线应在2~3mm 以上。 4、 接地线构成闭环路 只由数字电路组成的印制板,其接地电路布成环路大多能提高抗噪声能力。因为环形地线可以减小接地电阻,从而减小接地电位差。 二、 配置退藕电容 PCB 设计的常规做法之一是在印刷板的各个关键部位配置适当的退藕电容,退藕电容的一般配置原则是: 电源的输入端跨接10~100uf 的电解电器,如果印制电路板的位置允许,采用100uf 以上的电解电容器抗干扰效果会更好。 原则上每个集成电路芯片都应布置一个0.01uf~`0.1uf 的瓷片电容,如遇印制板空隙不够,可每4~8 个芯片布置一个1~10uf 的钽电容(最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感,最好使用钽电容或聚碳酸酝电容)。 对于抗噪能力弱、关断时电源变化大的器件,如RAM、ROM 存储器件,应在芯片的电源线和地线之间直接接入退藕电容。 电容引线不能太长,尤其是高频旁路电容不能有引线。 三、 过孔设计 在高速PCB 设计中,看似简单的过孔也往往会给电路的设计带来很大的负面效应,为了减小过孔的寄生效应带来的不利影响,在设计中可以尽量做到: 从成本和信号质量两方面来考虑,选择合理尺寸的过孔大小。例如对6- 10 层的内存模块PCB 设计来说,选用10/20mil(钻孔/焊盘)的过孔较好,对于一些高密度的小尺寸的板子,也可以尝试使用8/18Mil 的过孔。在目前技术条件下,很难使用更小尺寸的过孔了(当孔的深度超过钻孔直径的6 倍时,就无法保证孔壁能均匀镀铜);对于电源或地线的过孔则可以考虑使用较大尺寸,以减小阻抗。 使用较薄的PCB 板有利于减小过孔的两种寄生参数。 PCB 板上的信号走线尽量不换层,即尽量不要使用不必要的过孔。 电源和地的管脚要就近打过孔,过孔和管脚之间的引线越短越好。 在信号换层的过孔附近放置一些接地的过孔,以便为信号提供最近的回路。甚至可以在PCB 板上大量放置一些多余的接地过孔。 四、 降低噪声与电磁干扰的一些经验 能用低速芯片就不用高速的,高速芯片用在关键地方。 可用串一个电阻的方法,降低控制电路上下沿跳变速率。 尽量为继电器等提供某种形式的阻尼,如RC 设置电流阻尼。 使用满足系统要求的最低频率时钟。 时钟应尽量靠近到用该时钟的器件,石英晶体振荡器的外壳要接地。 用地线将时钟区圈起来,时钟线尽量短。 石英晶体下面以及对噪声敏感的器件下面不要走线。 时钟、总线、片选信号要远离I/O 线和接插件。 时钟线垂直于I/O 线比平行于I/O 线干扰小。 I/O 驱动电路尽量靠近PCB 板边,让其尽快离开PCB。对进入PCB 的信号要加滤波,从高噪声区来信号也要加滤波,同时用串终端电阻的办法,减小信号反射。 MCU 无用端要接高,或接地,或定义成输出端,集成电路上该接电源、地的端都要接,不要悬空。 闲置不用的门电路输入端不要悬空,闲置不用的运放正输入端接地,负输入端接输出端。 印制板尽量使用45 折线而不用90 折线布线,以减小高频信号对外的发射与耦合。 印制板按频率和电流开关特性分区,噪声元件与非噪声元件呀距离再远一些。 单面板和双面板用单点接电源和单点接地、电源线、地线尽量粗。 模拟电压输入线、参考电压端要尽量远离数字电路信号线,特别是时钟。 对A/D 类器件,数字部分与模拟部分不要交叉。 元件引脚尽量短,去藕电容引脚尽量短。 关键的线要尽量粗,并在两边加上保护地,高速线要短要直。 对噪声敏感的线不要与大电流,高速开关线并行。 弱信号电路,低频电路周围不要形成电流环路。 任何信号都不要形成环路,如不可避免,让环路区尽量小。 每个集成电路有一个去藕电容。每个电解电容边上都要加一个小的高频旁路电容。 用大容量的钽电容或聚酷电容而不用电解电容做电路充放电储能电容,使用管状电容时,外壳要接地。对干扰十分敏感的信号线要设置包地,可以有效地抑制串扰。 信号在印刷板上传输,其延迟时间不应大于所有器件的标称延迟时间。环境效应原则要注意所应用的环境,例如在一个振动或者其他容易使板子变形的环境中采用过细的铜膜导线很容易起皮拉断等。 安全工作原则 要保证安全工作,例如要保证两线最小间距要承受所加电压峰值,高压线应圆滑,不得有尖锐的倒角,否则容易造成板路击穿等。组装方便、规范原则走线设计要考虑组装是否方便,例如印制板上有大面积地线和电源线区时(面积超过50平方毫米),应局部开窗口以方便腐蚀等。此外还要考虑组装规范设计,例如元件的焊接点用焊盘来表示,这些焊盘(包括过孔)均会自动不上阻焊油,但是如用填充块当表贴焊盘或用线段当金手指插头,而又不做特别处理,(在阻焊层画出无阻焊油的区域),阻焊油将掩盖这些焊盘和金手指,容易造成误解性错误;SMD 器件的引脚与大面积覆铜连接时,要进行热隔离处理,一般是做一个Track 到铜箔,以防止受热不均造成的应力集中而导致虚焊;PCB上如果有Φ12 或方形12mm 以上的过孔时,必须做一个孔盖,以防止焊锡流出等。 经济原则 遵循该原则要求设计者要对加工,组装的工艺有足够的认识和了解,例如5mil 的线做腐蚀要比8mil 难,所以价格要高,过孔越小越贵等 热效应原则 在印制板设计时可考虑用以下几种方法:均匀分布热负载、给零件装散热器,局部或全局强迫风冷。从有利于散热的角度出发,印制板最好是直立安装,板与板的距离一般不应小于2cm,而且器件在印制板上的排列方式应遵循一定的规则:同一印制板上的器件应尽可能按其发热量大小及散热程度分区排列,发热量小或耐热性差的器件(如小信号晶体管、小规模集成电路、电解电容等)放在冷却气流的最上(入口处),发热量大或耐热性好的器件(如功率晶体管、大规模集成电路等)放在冷却气流最下。在水平方向上,大功率器件尽量靠近印刷板的边沿布置,以便缩短传热路径;在垂直方向上,大功率器件尽量靠近印刷板上方布置,以便减少这些器件在工作时对其他器件温度的影响。对温度比较敏感的器件最好安置在温度最低的区域(如设备的底部),千万不要将它放在发热器件的正上方,多个器件最好是在水平面上交错布局。设备内印制板的散热主要依靠空气流动,所以在设计时要研究空气流动的路径,合理配置器件或印制电路板。采用合理的器件排列方式,可以有效地降低印制电路的温升。此外通过降额使用,做等温处理等方法也是热设计中经常使用的手段。
13.41MB
全国大学生电子设计竞赛培训教程
2014-05-11很全很系统的电子设计竞赛教程 全国大学生电子设计竞赛训练教程 目 录 第1章电子设计竞赛题目与分析 1.1 全国大学生电子设计竞赛简介 1.1电子设计竞赛题目.doc(49 KB, 下载次数: 4829) 1.2 全国大学生电子设计竞赛命题原则及要求 1.2.1 命题范围 1.2.2 题目要求 1.2.3 题目类型 1.2.4 命题格式 1.2.5 征题办法 1.3 电子设计竞赛的题目分析 1.3.1 电源类题目分析 1.3.1 电源类题目分析.doc(110.5 KB, 下载次数: 7116) 1.3.2信号源类题目分析 1.3.2信号源类题目分析.doc(100.5 KB, 下载次数: 4527) 1.3.3无线电类题目分析 1.3.3 无线电类题目分析.doc(113.5 KB, 下载次数: 4431) 1.3.4放大器类题目分析 1.3.4 放大器类题目分析.doc(135.5 KB, 下载次数: 5214) 1.3.5仪器仪表类题目分析 1.3.5 仪器仪表类题目分析.doc(394.5 KB, 下载次数: 5131) 1.3.6数据采集与处理类题目分析 1.3.6 数据采集与处理类题目分析.doc(153 KB, 下载次数: 5521) 1.3.7控制类题目分析 1.3.7 控制类题目分析.doc(160.5 KB, 下载次数: 6677) 第2章电子设计竞赛基础训练 2.1 电子元器件的识别 2.1 电子元器件的识别.doc(3.69 MB, 下载次数: 13923) 2.1.1 电阻器 2.1.2 电位器 2.1.3 电容器 2.1.4 电感器 2.1.5 半导体分立器件 2.1.6 半导体集成电路 2.1.7 表面贴装元件 2.2 装配工具及方法 2.2 装配工艺及方法.doc(768.5 KB, 下载次数: 5941) 2.2.1 装配工具 2.2.2 焊接材料 2.2.3 焊接工艺和方法 2.3 印制电路板设计与制作 2.3 印制电路板设计与制作.doc(577.5 KB, 下载次数: 6103) 2.3.1 印制电路板设计 2.3.2 印制电路板的制作 第三章 单元电路训练 3.1集成直流稳压电源的设计 3.1 电源电路.doc(941 KB, 下载次数: 9416) 3.1.1 直流稳压电源的基本原理 3.1.2 三端固定式正压稳压器 3.1.3 三端固定式负压稳压器 3.1.4 三端可调式稳压器 3.1.5 正、负输出稳压电源 3.1.6 斩波调压电源电路 3.1.7 精密稳压电源电路 3.1.8 DC-DC电源电压 3.1.9 受控稳压电源 3.1.10 LCD显示器用负压电源 3.2 运算放大器电路 3.2放大电路.doc(541 KB, 下载次数: 8410) 3.2.1 运算放大器基本特性 3.2.2 基本运放应用电路 3.2.3 测量放大电路 3.3信号产生电路 3.3 信号产生电路.doc(2.44 MB, 下载次数: 15153) 3.3.1 分立模拟电路构成矩形波产生电路 3.3.2 正弦波产生电路 3.3.3三角波产生电路 3.3.4 多种信号发生电路 3.4信号处理电路 3.4 信号处理电路.doc(841.5 KB, 下载次数: 8376) 3.4.1 有源滤波电路 3.4.2 电压/频率、频率/电压变换电路 3.4.3 电流-电压变换电路 3.5 声音报警电路 3.5 声音报警电.doc(1018 KB, 下载次数: 8366) 3.5.1 分立元件制作的声音报警电路 3.5.2 与单片机接口的声音报警电路与程序 3.5.3 与可编程逻辑器件接口的声音报警电路与程序 3.6 传感器及其应用电路 3.6 传感器电路.rar(2.64 MB, 下载次数: 15456) 3.6.1 传感器种类介绍 3.6.2 霍尔传感器与应用电路 3.6.3 金属传感器与应用电路 3.6.4 温度传感器与应用电路 3.6.5 光电传感器与应用电路 3.6.6 超声波传感器与应用电路 3.7 功率驱动电路 3.7 功率接口电路.doc(275 KB, 下载次数: 6263) 3.7.1 直流电机驱动接口电路 3.7.2 步进电机及驱动电路 3.7.3 继电器电路 3.7.4 固态继电器电路 3.8显示电路 3.8 显示电路.doc(72.5 KB, 下载次数: 4770) 3.8.1 LED显示器接口电路 3.8.2 LCD显示器的控制 3.9 A/D转换器 3.9 AD与DA接口电路.DOC(351 KB, 下载次数: 7499) 3.9.1 A/D转换器的分类及简介 3.9.2 A/D转换器的主要技术指标 3.9.3 A/D转换器及其相应接口电路选择原则 3.9
451KB
16路信号采集转换器器.pdf
2019-09-1716路信号采集转换器器pdf,ISOAD 16功能简介:ISOAD 16 信号隔离采集模块,可以用来测量16路隔离/非隔离电流或电压信号。1、 模拟信号输入24位采集精度,产品出厂前所有信号输入范围已全部校准。在使用时,用户也可以很方便的自行编程校准。具体电流或电压输入量程请看产品选型,测量两路信号时两路输入选型必须相同。2、 通讯协议通讯接口: 1路标准的RS-485通讯接口或1路标准的RS-232通讯接口,同时仅一路有效。通讯协议:支持两种协议,专用ASCII字符通讯协议和标准MODBUS RTU通讯协议。可通过编程设定使用哪种通讯协议,能实现与多种品牌的PLC、RTU或计算机监控系统进行网络通讯。数据格式:10位。1位起始位,8位数据位,1位停止位。通讯地址(0~255)和波特率(300、600、1200、2400、4800、9600、19200、38400、57600、115200bps)均可设定;通讯网络最长距离可达1200米,通过双绞屏蔽电缆连接。通讯接口高抗干扰设计,±15KV ESD保护,通信响应时间小于100mS。 3、 抗干扰可根据需要设置校验和。模块内部有瞬态抑制二极管,可以有效抑制各种浪涌脉冲,保护模块,内部的数字滤波,也可以很好的抑制来自电网的工频干扰。产品选型: ISOAD16 U(A)□ - □ 输入电压或电流信号值 通讯接口U1:0-5V A1:0-1mA 485: 默认输出为RS-485接口 U2:0-10V A2:0-10mA 232: 默认输出为RS-232接口U3:0-75mV A3:0-20mA U4:0-2.5V A4:4-20mA U5:0-±5V A5:0-±1mA U6:0-±10V A6:0-±10mA U7:0-±100mV A7:0-±20mA U8:用户自定义 A8:用户自定义 备注:用户可以通过产品后部的端口跳线选择RS-485输出,或RS-232输出。选型举例1: 型号:ISOAD16 A4-485 表示4-20mA信号输入,输出为RS-485接口选型举例2: 型号:ISOAD16 A7-232 表示0-±20mA信号输入,输出为RS-232接口ISOAD 16通用参数:(typical @ 25℃,Vs为24VDC)输入类型: 电流输入 / 电压输入精 度: @ 25℃ 表1所示非线性度: @ 25℃ 表1所示输入失调: ±0.1 uA/℃温度漂移: ±15 ppm/℃ (±30 ppm/℃, 最大)输入电阻: 50Ω (4-20mA/0-20mA/0-±20mA电流输入) 100Ω (0-10mA/0-±10mA电流输入) 1KΩ (0-1mA/0-±1mA电流输入) 大于1MΩ(电压输入) 带 宽: -3 dB 10 Hz转换速率: 2.5-30KHz Sps共模抑制(CMR): 120 dB(1kΩ Source Imbalance @ 50/60 Hz)常模抑制(NMR): 60 dB (1kΩ Source Imbalance @ 50/60 Hz)输入端保护: 过压保护,过流保护通 讯: 协议 RS-485 或 RS-232 专用ASCII字符协议 和 标准MODBUS RTU通讯协议 波特率(300、600、1200、2400、4800、9600、19200、38400bps、57600、115200bps)可软件选择地址(0~255)可软件选择通讯响应时间:100 ms 最大 工作电源: 24VDC -5%,内部有防反接和过压保护电路 功率消耗: 小于7.5W工作温度: - 45 ~ 80℃ 工作湿度: 10 ~ 90% (无凝露)存储温度: - 45 ~ 80℃ 存储湿度: 10 ~ 95% (无凝露) 隔离耐压: 输入 / 输出 之间: 3KVDC,1分钟,漏电流 1mA 其中输出和电源共地。耐冲击电压: 3KVAC, 1.2/50us(峰值)外形尺寸:
33KB
c语言编写单片机技巧
2009-04-191. C语言和汇编语言在开发单片机时各有哪些优缺点? 答:汇编语言是一种用文字助记符来表示机器指令的符号语言,是最接近机器码的一种语言。其主要优点是占用资源少、程序执行效率高。但是不同的CPU,其汇编语言可能有所差异,所以不易移植。 C语言是一种结构化的高级语言。其优点是可读性好,移植容易,是普遍使用的一种计算机语言。缺点是占用资源较多,执行效率没有汇编高。 对于目前普遍使用的RISC架构的8bit MCU来说,其内部ROM、RAM、STACK等资源都有限,如果使用C语言编写,一条C语言指令编译后,会变成很多条机器码,很容易出现ROM空间不够、堆栈溢出等问题。而且一些单片机厂家也不一定能提供C编译器。而汇编语言,一条指令就对应一个机器码,每一步执行什幺动作都很清楚,并且程序大小和堆栈调用情况都容易控制,调试起来也比较方便。所以在单片机开发中,我们还是建议采用汇编语言比较好。 如果对单片机C语言有兴趣,HOLTEK-p.htm" target="_blank" title="HOLTEK货源和PDF资料">HOLTEK的单片机就有提供C编译器,可以到HOLTEK-p.htm" target="_blank" title="HOLTEK货源和PDF资料">HOLTEK的网站(www.holtek.com.cn )免费下载使用。 2. C或汇编语言可以用于单片机,C++能吗? 答:在单片机开发中,主要是汇编和C,没有用C++的。 3. 搞单片机开发,一定要会C吗? 答:汇编语言是一种用文字助记符来表示机器指令的符号语言,是最接近机器码的一种语言。其主要优点是占用资源少、程序执行效率高。但是不同的CPU,其汇编语言可能有所差异,所以不易移植。 对于目前普遍使用的RISC架构的8bit MCU来说,其内部ROM、RAM、STACK等资源都有限,如果使用C语言编写,一条C语言指令编译后,会变成很多条机器码,很容易出现ROM空间不够、堆栈溢出等问题。而且一些单片机厂家也不一定能提供C编译器。而汇编语言,一条指令就对应一个机器码,每一步执行什么动作都很清楚,并且程序大小和堆栈调用情况都容易控制,调试起来也比较方便。所以在资源较少单片机开发中,我们还是建议采用汇编语言比较好。 而C语言是一种编译型程序设计语言,它兼顾了多种高级语言的特点,并具备汇编语言的功能。C语言有功能丰富的库函数、运算速度快、编译效率高、有良好的可移植性,而且可以直接实现对系统硬件的控制。C语言是一种结构化程序设计语言,它支持当前程序设计中广泛采用的由顶向下结构化程序设计技术。此外,C语言程序具有完善的模块程序结构,从而为软件开发中采用模块化程序设计方法提供了有力的保障。因此,使用C语言进行程序设计已成为软件开发的一个主流。用C语言来编写目标系统软件,会大大缩短开发周期,且明显地增加软件的可读性,便于改进和扩充,从而研制出规模更大、性能更完备的系统。 综上所述,用C语言进行单片机程序设计是单片机开发与应用的必然趋势。所以作为一个技术全面并涉足较大规模的软件系统开发的单片机开发人员最好能够掌握基本的C语言编程。 4. 当开发一个较复杂而又开发时间短的项目时,用C还是用汇编开发好? 答:对于复杂而开发时间紧的项目时,可以采用C语言,但前提是要求对该MCU系统的C语言和C编译器非常熟悉,特别要注意该C编译系统所能支持的数据类型和算法。虽然C语言是最普遍的一种高级语言,但不同的MCU厂家其C语言编译系统是有所差别的,特别是在一些特殊功能模块的操作上。如果对这些特性不了解,那调试起来就有的烦了,到头来可能还不如用汇编来的快。 5. 在教学中要用到8088和196芯片单片机教材,请问那里可以找到关于这方面的书或资料? 答:有关这方面的教材,大学里常用的一本是《IBM-PC汇编语言程序设计》清华大学出版社出版的,在网上以及书店都是可以找到的,另外网上还可以搜索到很多其他的教材如:《微机原理及汇编语言教程》(杨延双 张晓冬 等编著 )和《16/32 位微机原理、汇编语言及接口技术》(作者: 钟晓捷 陈涛 ,机械工业出版社 出版)等,可以在较大型的科技书店里查找或者直接从网上订购。 6. 初学者到底是应该先学C还是汇编? 答:对于单片机的初学者来说,应该从汇编学起。因为汇编语言是最接近机器码的一种语言,可以加深初学者对单片机各个功能模块的了解,从而打好扎实的基础。 7. 我是一名武汉大学电子科技大3的学生,学了电子线路、数字逻辑、汇编
7.32MB
单片机程序设计实例 (带书签pdf, 阅读起来就是爽,不是精品我不发)
2009-05-13pdf文件带书签功能,阅读很方便的 -------------------------------------- 简介:8051系列单片机是目前应用十分广泛的一种单片机。它开发研究早并日趋完善,具有很高的性价比,适合在众多工业控制领域应用。 本书深入浅出地介绍了8051单片机的硬件结构及原理、单片机程序开发方法和实例。重点介绍了单片机系统及程序开发的方法及步骤,并提供了大量的实用程序开发实例。 通过对单片机开发实例的剖析,可以使初学者迅速掌握单片机程序开发的方法和技巧,使已有一定单片机经验的读者得心应手地调用某些子程序,以组成具有特定功能的应用程序。 本书可作为大专院校学生和在职技术人员学习单片机程序开发的教材,也可作为单片机应用及开发人员参考。 目录: 第1章 单片机电路设计基本方法和流程 1. 1 电路设计软件概述 1. 1. 1 Protel 99电路原理图设计 1. 1. 2 PCB设计软件 1. 2 单片机最小用户系统的设计 1. 2. 1 单片机电源电路设计 1. 2. 2 单片机复位电路的设计 1. 2. 3 单片机时钟电路的设计 1. 2. 4 单片机程序存储器扩展设计 1. 2. 5 单片机数据存储器扩展设计 1. 2. 6 单片机I/O扩展设计 1. 3 单片机实用系统的设计流程 1. 3. 1 根据用户需求设计电路原理图 1. 3. 2 根据原理图设计PCB板 1. 3. 3 根据设计流程和思想编写软件程序 1. 3. 4 定制PCB板和元件的焊接 1. 3. 5 用单片机仿真器调试电路功能 1. 3. 6 固化软件和系统集成 1. 4 单片机实用系统设计注意事项 1. 4. 1 单片机以及电路所用器件的选择问题 1. 4. 2 PCB板设计应注意的问题 1. 4. 3 电路抗干扰的问题 1. 4. 4 系统可靠性设计的问题 第2章 单片机系统的设计方法 2. 1 单片机应用系统设计方法 2. 1. 1 总体方案论证 2. 1. 2 系统硬件设计 2. 1. 3 系统软件设计 2. 2 单片机程序的设计方法 2. 2. 1 程序流程图的画法 2. 2. 2 简单程序 2. 2. 3 分支程序 2. 2. 4 循环程序 2. 2. 5 查表程序 2. 2. 6 子程序 2. 3 程序测试法 2. 3. 1 白盒测试法 2. 3. 2 黑盒测试法 2. 3. 3 自顶向下测试法 2. 3. 4 自底向上测试法 第3章 单片机数据结构及实用算法子程序 3. 1 单片机数据结构 3. 2 数制转换子程序 3. 2. 1 二进制浮点数转换为十进制数的方法和子程序 3. 2. 2 十进制浮点数转换为二进制数的方法和子程序 3. 3 二进制数的算术子程序 3. 3. 1 定点数与浮点数的表示方法 3. 3. 2 浮点数的四则运算规则 3. 3. 3 多字节浮点数的规格化与对阶 3. 3. 4 定点双精度无符号数乘法运算子程序 3. 3. 5 多字节浮点数乘法运算子程序 3. 3. 6 多字节浮点数除法运算子程序 3. 4 函数子程序 3. 4. 1 对数算法和子程序 3. 4. 2 正弦函数的算法和子程序 3. 4. 3 反正弦函数的算法和子程序 3. 5 滤波子程序 3. 5. 1 平均滤波子程序 3. 5. 2 低通滤波子程序 3. 5. 3 程序判断滤波 3. 5. 4 坏值剔除滤波子程序 3. 5. 5 中值滤波子程序 3. 5. 6 加权滤波子程序 3. 6 数据处理于程序 3. 6. 1 散转程序 3. 6. 2 数据检索 3. 6. 3 数据排序 3. 7 数字HD程序设计方法及实例 3. 7. 1 PID调节的方法和原理 3. 7. 2 单片机PID程序设计实例 3. 8 其他数字控制方法的程序设计 第4章 单片机硬件接口程序设计 4. 1 定时器程序设计方法及实例 4. 2 中断程序设计方法及实例 4. 3 键盘设计 4. 3. 1 键盘输入的特点 4. 3. 2 消抖的措施 4. 3. 3 矩阵式键盘设计 4. 3. 4 键盘设计实例 4. 4 显示程序设计方法及实例 4. 4. 1 LED显示原理 4. 4. 2 动态显示实例 4. 4. 3 静态显示实例 4. 4. 4 液晶显示LCD 4. 4. 5 VFD驱动芯片及程序设计 4. 5 微型打印机接口程序设计 4. 6 A/D及D/A接口程序设计 4. 7 V/F器件及接口程序设计 4. 7. 1 V/F变换器的原理 4. 7. 2 几种常用的V/F变换器 4. 7. 3 V/F变换器的应用 第5章 单片机总线标准. 常用芯片及程序设计实例 5. 1 I2C总线及接口程序设计 5. 1. 1 I2C总线简介 5. 1. 2 MCS-51与I2C总线芯片接口程序设计 5. 2 SPI总线及接口程序设计 5. 2. 1 SPI总线简介 5. 2. 2 常用符合SPI总线标准的芯片 5. 2. 3 SPI应用示例 5. 3 一线总线及接口程序设计 5. 3. 1 一线总线简介 5. 3. 2 常用符合一线总线标准的芯片 5. 3. 3 8051与一线总线芯片接口程序设计 第6章 单片机通信程序设计 6. 1 多单片机共享存储器通信方式 6. 1. 1 双口RAM的接口和通信特点 6. 1. 2 多机通信工作原理 6. 1. 3 多机通信工作流程及程序设计 6. 2 串行通信基础 6. 2. 1 串行通信的过程及通信协议 6. 2. 2 8051串行端口的应用 6. 2. 3 805l串行端口程序设计实例 6. 3 8051和PC机之间的通信 6. 4 数据传输差错控制 6. 4. 1 数据传输差错控制原理 6. 4. 2 简单差错控制方法 6. 4. 3 CRC校验原理及程序设计 6. 5 红外 6. 6 光纤通信 6. 6. 1 光纤通信的特点 6. 6. 2 光纤通信系统的组成 6. 7 无线电通信 第7章 软件抗干扰措施 7. 1 干扰的来源及防治 7. 1. 1 供电系统 7. 1. 2 尖峰脉冲干扰的防治 7. 1. 3 电源掉电检测及其应用 7. 2 微机抗干扰新方法 7. 3 软件抗干扰的方法 7. 3. 1 软件陷阱及指令冗余 7. 3. 2 程序运行监视系统 第8章 单片机开发设计实例 8. 1 时钟及显示程序 8. 1. 1 时钟设计思路及其硬件设计 8. 1. 2 设计流程图及程序 8. 2 数据采集与显示系统设计 8. 2. 1 模拟输入子系统的设计 8. 2. 2 A/D转换 8. 2. 3 数据处理 8. 2. 4 显示输出 8. 2. 5 数据采集与显示程序链接 8. 3 正弦函数发生器 8. 3. 1 数学原理 8. 3. 2 设计方法 8. 3. 3 参考程序 8. 4 水温控制系统 8. 4. 1 系统硬件工作分析 8. 4. 2 软件设计思想 8. 4. 3 控制系统流程图 8. 5 单片机在电力电子领域的应用及实例 8. 5. 1 电力电子应用领域对单片机的特殊要求 8. 5. 2 单片机在小功率方面的应用 8. 5. 3 SPWM调制波的产生
1.23MB
程控交换实验、用户模块电路 主要完成BORSCHT七种功能,它由下列电路组成:
2008-12-24实验一 程控交换原理实验系统及控制单元实验 一、 实验目的 1、熟悉该程控交换原理实验系统的电路组成与主要部件的作用。 2、体会程控交换原理实验系统进行电话通信时的工作过程。 3、了解CPU中央集中控制处理器电路组成及工作过程。 二、 预习要求 预习《程控交换原理》与《MCS-51单片计算机原理与应用》中的有关内容。 三、 实验仪器仪表 1、主机实验箱 一台 2、三用表 一台 3、电话单机 四台 四、 实验系统电路组成 (一)电路组成 图1-1是该实验系统的原理框图 图1-1 实验系统的原理框图 图1—2是该实验系统的方框图,其电路的组成及主要作用如下: 1、用户模块电路 主要完成BORSCHT七种功能,它由下列电路组成: A、 用户线接口电路 B、 二\四线变换器 C、 PCM编译码电路 用户线接口电路 二/ 四线变换器 二/四线变换器 用户线接口电路 用户1 PCM CODEC电路 PCM CODEC电路 用户3 用户线接口电路 二/ 四线变换器 二/ 四线变换器 用户线接口电路 用户2 PCM CODEC电路 PCM CODEC电路 用户4 时钟信号电路 控制、检测电路 输出显示电路 二次稳压电路 多种信号音电路 CPU中央处理器 键盘输入电路 直流电源 图1-2 实验系统方框图 2、交换网络系统 主要完成空分交换与时隙交换两大功能,它由下列电路组成: A、空分交换网络系统 B、时隙交换网络系统 3、多种信号音电路 主要完成各种信号音的产生与发送,它由下列电路组成: A、450Hz拨号音电路 B、忙音发生电路 C、回铃音发生电路 D、25Hz振铃信号电路 4、CPU中央集中控制处理器电路 主要完成对系统电路的各种控制,信号检测,号码识别,键盘输入信息,输出显示信息等各种功能。 5、系统工作电源 主要完成系统所需要的各种电源,本实验系统中有+5V,-5V,+12V,-12V,-48V等5组电源,由下列电路组成: A、内置工作电源:+5V,+12V,-12V,-48V B、稳压电源: -8V,-5V 控制部分就是由CPU中央处理系统、输入电路(键盘)、输出电路(数码管)、双音多频DTMF检测电路、用户环路状态检测电路、自动交换网络驱动电路与交换网络转换电路、扩展电路、信号音控制电路等电路组成。 下面简要说明各部分电路的作用与要求: 1、键盘输入电路: 主要把实验过程中的一些功能通过键盘设置到系统中。 2、显示电路: 显示主叫与被叫电路的电话号码,同时显示通话时间。 3、输入输出扩展电路: 显示电路与键盘输入电路主要通过该电路进行工作。主要芯片是D8155A,SN74LS240,MC1413。 4、双音多频DTMF接收检测电路: 把MT8870DC输出的DTMF四位二进制信号,接收存贮后再送给CPU中央集中控制处理系统。 5、用户状态检测电路: 主要识别主、被叫用户的摘挂机状态,送给CPU进行处理。 6、自动交换网络驱动电路: 主要实现电话交换通信时,CPU发出命令信息,由此电路实现驱动自动交换网络系统,其核心集成电路为SN74LS374,D8255A,GD74LS373等芯片。 7、信号音控制电路: 它完全按照CPU发出的指令进行操作,使各种信号音按照系统程序进行工作。 8、振铃控制电路: 它也是按照CPU发出的指令进行工作,具体如下: (A)不振铃时,要求振铃支路与供电系统分开。 (B)振铃时,铃流送向话机,并且供电系统通过振铃支路向用户馈电,用户状态检测电路同时能检测用户的忙闲工作状态。 (C)当振铃时,用户一摘机就要求迅速断开振铃支路。 (D)振铃时要求有1秒钟振、4秒钟停的通断比。 以上是CPU中央集中控制处理系统的主要工作过程,要全面具体实现上述工作过程,则要有软件支持,该软件程序流程图见图1—4。 图1-3 键盘功能框图 对图1-3所示的键盘功能作如下介绍: “时间”: 该键可设置系统的延时时间。如久不拔号、久不应答、位间不拔号的延时,缺省值为10秒,可选择的时间值有10秒、30秒、1分钟。按一次该键则显示下一个时间值,三个值循环显示,当按下“确认”键时,就选定当前显示值供系统使用,按“复位”键则清除该次时间的设定。 “会议电话”: 该键为召开电话会议的按键。电话会议设置用户1为主叫方,其他三路为被叫方,只能由主叫方主持召开会议,向其他三路发出呼叫。电路完全接通或者接通两路后,主叫方能和任一被叫方互相通话。除“复位”键外,其他键均推失去功能。会议结束后,可按“复位”键重启系统。 “中继”: 该键为局内交换切向中继交换的功能按键,按下此键,再按“确认”键进行确认,则工作模式由局内交换切换为中继交换,显示器循环显示“d”,此时方可通过中继拨打“长途”电话。按“复位”键重启系统,进入正常局内交换模式。 “确认”: 该键完成对其他功能键的确认,防止误按键,在键盘中除“复位”键外,其他功能键都必须加“确认”键才能完成所定义的功能。 “复位”: 该键为重启系统按键。在任何时候或者系统出现不正常状态时都可按下此键重启系统(有用户通话时,会中断通话),所有设置均为默认值。 图1-5是显示电路工作示意说明图。 主叫号码显示 计时显示 被叫号码显示 图1-5 显示电路 开 始 NO 有用户呼叫吗? 呼叫••••••••••••••••••••••••••••••••••••••••••• YES 去 话 接 续 向主叫送拨号音 NO 第一位号码来了吗? 拨号开始•••••••••••••••••••••••••••••••• YES 停送拨号音,收存号码 内 部 处 理 拨号完毕•••••••••••••••••••••••••••••••• 被叫闲吗? NO YES 来 话 接 续 向主叫送忙音 向被叫送铃流,向主叫送回铃音 被叫应答否? NO 主叫挂机否? 应答•••••••••••••••••••••••••••••••••••• YES 停送铃流,回铃音,接通电路 YES 话终挂机否? 挂机•••••••••••••••••••••••••••••••••••••• YES 拆线(释放复原) 结 束 图1-4 程序工作流程示意图 五、实验内容 1、测量实验系统电路板中的TP91~TP95各测量点电压值,并记录。 2、从总体上初步熟悉两部电话单机用空分交换方式进行通话。 3、初步建立程控交换原理系统及电话通信的概念。 4、观察并记录一个正常呼叫的全过程。 5、观察并记录一个不正常呼叫的状态。 图1-6 呼叫识别电路框图 五、 实验步骤 1、接上交流电源线。 2、将K11~K14,K21~K24,K31~K34,K41~K44接2,3脚;K70~K75接2,3脚;K60~K63接2,3脚。 3、先打开“交流开关”,指示发光二极管亮后,再分别按下直流输出开关J8,J9。此时实验箱上的五组电源已供电,各自发光二极管亮。 4、按 “复位”键进行一次上电复位,此时,CPU已对系统进行初始化处理,数码管循环显示“P” ,即可进行实验。 5、将三用表拔至直流电压档,然后测量TP91,TP92,TP93,TP94,TP95的电压是否正常:TP91为-12V,TP92为-48V,TP93为+5V,TP94为+12V,TP95为-5V。(-48V允许误差±10%,其它为±5%) 6、将四个用户接上电话单机。 7、正常呼叫全过程的观察与记录。(现以用户1为主叫,用户4为被叫进行实验) A、 主叫摘机,听到拨号音,数码管显示主叫电话号码“68” 。 B、 主叫拨首位被叫号码“8”,主叫拨号音停,主叫继续拨完被叫号码“9”。 C、 被叫振铃,主叫听到回铃音。 D、 被叫摘机,被叫振铃停,主叫回铃音停,双方通话。数码管显示主叫号码和被叫号码,并开始通话计时。 E、 挂机,任意一方先挂机(如主叫先挂机),另一方(被叫)听到忙音,计时暂停,双方都挂机后,数码管循环显示“P” 。 8、不正常呼叫的自动处理 A、 主叫摘机后在规定的系统时间内不拨号,主叫听到忙音。(系统时间可以设置,在系统复位后按“时间”可循环显示“10”,“30”,“100”,分别表示10秒,30秒,1分钟,选定一个时间,按“确定”即系统时间被设置,在复位状态时,系统时间默认为10秒。) B、 拨完第一位号码后在规定的系统时间内没有拨第二位号码时,主叫听到忙音。 C、 号码拨错时(如主叫拨“56” ),主叫听到忙音。 D、 被叫振铃后在规定的系统时间内不摘机,被叫振铃音停,主叫听到忙音。 六、 实验注意事项 对实验系统加电一定要严格遵循先打开系统工作电源的“交流开关”,然后再打开直流输出开关J8,J9。实验结束后,先分别关直流输出开关J8,J9。最后再关“交流开关”,以避免实验电路的器件损坏。 七、 实验报告要求 1、画出实验系统电路的方框图,并作简要叙述。 2、对正常呼叫全过程进行记录。 实验二 用户线接口电路及二\四线变换实验 一、实验目的 1、全面了解用户线接口电路功能(BORST)的作用及其实现方法。 2、通过对MH88612C电路的学习与实验,进一步加深对BORST功能的理解。 3、了解二\四线变换电路的工作原理。 二、预习要求 认真预习程控交换原理中有关用户线接口电路等章节。 三、实验仪器仪表 1、主机实验箱 一台 2、电话单机 二台 3、20MHz示波器 一台 4、三用表 一台 四、电路工作过程 在现代电话通信设备与程控交换机中,由于交换网络不能通过铃流、馈电等电流,因而将过去在公用设备(如绳路)实现的一些用户功能放到“用户电路”来完成。 用户电路也可称为用户线接口电路(Subscriber Line Interface Circuit—SLIC)。任何交换机都具有用户线接口电路。 模拟用户线接口电路在实现上的最大压力是应能承受馈电、铃流和外界干扰等高压大电流的冲击,过去都是采用晶体管、变压器(或混合线圈)、继电器等分立元件构成,随着微电子技术的发展,近十年来在国际上陆续开发多种模拟SLIC,它们或是采用半导体集成工艺或是采用薄膜、厚膜混合工艺,并已实用化。在实际中,基于实现和应用上的考虑,通常将BORSCHT功能中过压保护由外接元器件完成,编解码器部分另单成一体,集成为编解码器(CODEC),其余功能由所谓集成模拟SLIC完成。 在布控交换机中,向用户馈电,向用户振铃等功能都是在绳路中实现的,馈电电压一般是-60V,用户的馈电电流一般是20mA~30 mA,铃流是25HZ, 90V左右,而在程控交换机中,由于交换网络处理的是数字信息,无法向用户馈电、振铃等,所以向用户馈电、振铃等任务就由用户线接口电路来承担完成,再加上其它一些要求,程控交换机中的用户线接口电路一般要具有B(馈电)、O(过压保护)、R(振铃)、S(监视)、C(编译码)、H(混合)、T(测试)七项功能。 模拟用户线接口电路的功能可以归纳为BORSCHT七种功能,具体含义是: (1)馈电(B-Battery feeling)向用户话机送直流电流。通常要求馈电电压为—48伏,环路电流不小于18mA。 (2)过压保护(O-Overvoltage protection)防止过压过流冲击和损坏电路、设备。 (3)振铃控制(R-Ringing Control)向用户话机馈送铃流,通常为25HZ/90Vrms正弦波。 (4)监视(S-Supervision)监视用户线的状态,检测话机摘机、挂机与拨号脉冲等信号以送往控制网络和交换网络。 (5)编解码与滤波(C-CODEC/Filter)在数字交换中,它完成模拟话音与数字码间的转换。通常采用PCM编码器(Coder)与解码器(Decoder)来完成,统称为CODEC。相应的防混叠与平滑低通滤波器占有话路(300HZ~3400HZ)带宽,编码速率为64kb/s。 (6)混合(H-Hyhird)完成二线与四线的转换功能,即实现模拟二线双向信号与PCM发送,接收数字四线单向信号之间的连接。过去这种功能由混合线圈实现,现在改为集成电路,因此称为“混合电路”。 (7)测试(T-Test)对用户电路进行测试。 模拟用户线接口功能见图2—1。 铃流发生器 馈电电源 发送码流 过 振 低通 编 a 压 测 铃 馈 混 码 模 拟 保 试 继 电 合 平衡 器 用 (编码信号) 户 护 开 电 电 电 网络 解 线 b 电 关 器 路 路 码 路 低通 器 接收码流 测试 振铃控台 用户线 总线 制信号弹 状态信号 图2-1 模拟用户线接口功能框 (一)用户线接口电路 在本实验系统中,用户线接口电路选用的是MITEL公司的MH88612C。MH88612C是2/4线厚膜混合用户线接口电路。它包含向用户话机恒流馈电、向被叫用户话机馈送铃流、用户摘机后自行截除铃流,摘挂机的检测及音频或脉冲信号的识别,用户线是否有话机的识别,语音信号的2/4线混合转换,外接振铃继电器驱动输出。MH88612C用户电路的双向传输衰耗均为-1dB,供电电源+5V和-5V。其各项性能指标符合邮电部制定的有关标准。 (1)该电路的基本特性 1、向用户馈送铃流 2、向用户恒流馈电 3、过压过流保护 4、被叫用户摘机自截铃 5、摘挂机检测和LED显示 6、音频或脉冲拨号检测 7、振铃继电器驱动输出 8、语音信号的2/4线转换 9、能识别是否有话机 10、无需偶合变压器 11、体积小及低功耗 12、极少量外围器件 13、厚膜混合型工艺 14、封装形式为20引线单列直插 图2-2是它的管脚排列图 (2)MH88612C引出端功能的说明 0脚:IC Internal Connection:空端。 1脚:TF Tip Feed: 连接外接二极管作为保护电路连到-48V和地。。 2脚:IC Internal Connection:空端。 3脚:VR Voice Receive(input): 四线语音信号的接收端。 4脚:VRef Voltage Reference:设置向用户电话线送恒流馈电的参考电压,恒流通过VRef调节;也可接地,一般为21mA环流。 5脚:VEE 负供电电源,通常为-5V DC。 6脚:GNDA 供电电源和馈电电源的地端,模拟接地。 7脚:GS Gain setting(input):低电平时直接接收附加增益为-0.5 dB, 此增益除编解码增益设置之外的,高电平时为0dB。 8脚:VX Voice Transmit(output):四线语音信号的发送端。 9脚:TIP 连接用户电话的“TIP”线。 10脚:RING 连接用户电话的“RING”线。 11脚:RF Ring Feed:外部连接至振铃继电器。 12脚:VDD 正供电电源,通常为+5V DC。 13脚:RC Relay Control(input)振铃继电器控制输入端,高电平有效 14脚:RD 振铃继电器驱动输出端,外接振铃继电器线圈至地端,内部有一线圈感应箝位二极管。 15脚:RV Ring Feed Voltage:用户线铃流源输入端,外部连接至振铃继电器。 16脚:VRLY 振铃继电器正供电电源,能常为+5V DC。 17脚:IC Internal Connection:空端。 18脚:VBat 用户线馈电电压,通常为-48V DC 19脚:CAP 连接外部电容作为振铃滤波控制连电阻到地。 20脚:SHK 摘挂机状态检测及脉冲号码输出端,摘机时输出高电平。 (3)用户线接口电路主要功能 图2-3是MH88612C内部电路方框图,其主要功能说明如下: TF VR TIP RING VX RF RV VRLY RC VRef RD CAP SHK 图2-3 MH88612C内部电路方框图 1、向用户话机供电,MH88612C可对用户话机提供恒流馈电,馈电电流由VBAT以及VDD供给。恒定的电流为25 mA。当环路电阻为2KΩ时,馈电电流为18 mA,具体如下: A、 供电电源VBat采用-48V; B、 在静态情况下(不振铃、不呼叫),-48V电源通过继电器静合接点至话机; C、 在振铃时,-48V电源通过振铃支路经继电器动合接点至话机; D、 用户挂机时,话机叉簧下压馈电回路断开,回路无电流流过; E、 用户摘机后,话机叉簧上升,接通馈电回路(在振铃时接通振铃支路)回路。 2、MH88612C内部具有过压保护的功能,可以抵抗保护TIP- -RING端口间的瞬时高压,如结合外部的热敏与压敏电阻保护电路,则可保护250V左右高压。 3、振铃电路可由外部的振铃继电器和用户电路内部的继电器驱动电路以及铃流电源向用户馈送铃流:当继电器控制端(RC端)输入高电平,继电器驱动输出端(RD端)输出高电平,继电器接通,此时铃流源通过与振铃继电器连接的15端(RV端)经TIP––RING端口向被叫用户馈送铃流。当控制端(RC端)输入低电平或被叫用户摘机都可截除铃流。用户电路内部提供一振铃继电器感应电压抑制箝位二极管。 4、监视用户线的状态变化即检测摘挂机信号,具体如下: A、用户挂机时,用户状态检测输出端输出低电平,以向CPU中央集中控制系统表示用户“闲”; B、用户摘机时,用户状态检测输出端输出高电平,以向CPU中央集中控制系统表示“忙”; 5、在TIP––RING端口间传输的语音信号为对地平衡的双向语音信号,在四线VR端与VX端传输的信号为收发分开的不平衡语音信号。MH88612C可以进行TIP––RING端口与四线VR端和VX端间语音信号的双向传输和2/4线混合转换。 6、MH88612C可以提供用户线短路保护:TIP线与RING线间,TIP线与地间,RING线与地间的长时间的短路对器件都不会损坏。 7、MH88612C提供的双向语音信号的传输衰耗均为-dB。该传输衰耗可以通过MH88612C用户电路的内部调整,也可通过外部电路调整; 8、MH88612C的四线端口可供语音信号编译码器或交换矩阵使用。 由图1-1可知,本实验系统共有四个用户线接口电路,电路的组成与工作过程均一样,因此只对其中的一路进行分析。 图2-4是用户1用户线接口电路的原理图: 图2-4 用户线接口电路电原理图 为了简单和经济起见,反映用户状态的信号一般都是直流信号,当用户摘机时,用户环路闭合,有用户线上有直流电流流过。主叫摘机表示呼叫信号,被叫摘机,则表示应答信号,当用户挂机时,用户环路断开,用户线上的直流电流也断开,因此交换机可以通过检测用户线上直流电流的有无来区分用户状态。 当用户摘机时,发光二极管D10亮表示用户已处于摘机状态,TP13由低电平变成高电平,此状态送到CPU进行检测该路是否摘机,当检测到该路有摘机时,CPU命令拨号音及控制电路送出f=450HZ,U=3V的波形。 此时,在TP12上能检测到如图2—5所示波形 TP12 0 2VP-P t f = 400~450Hz 图2-5 450Hz拨号音波形 当用户听到450HZ拨号音信号时,用户开始拨电话号码,双音多频号码检测电路检测到号码时通知CPU进行处理,CPU命令450HZ拨号音发生器停止送拨号音,用户继续拨完号码,CPU检测主叫所要被叫用户的号码后,立即向被叫用户送振铃信号,提醒被叫用户接听电话,同时向主叫用户送回铃音信号,以表示线路能够接通,当被叫用户摘机时,CPU接通双方线路,通信过程建立。一旦接通链路,CPU即开始计时,当任一方先挂机,CPU检测到后,立即向另一方送忙音,以示催促挂机,至此,主、被叫用户一次通信过程结束。 通过上述简单分析,不难得出各测量点的波形。 TP11:通信时有发送话音波形;拨号时有瞬间DTMF波形;不通信时则此点无波形。 TP12:通信时有接收话音波形:摘机后拨号前有450HZ拨号音信号;不通信时则此点无波形。 TP13:摘挂机状态检测测量点 挂机:TP13=低电平。 摘机:TP13=高电平。 TP14:振铃控制信号输入,高电平有效。即工作时为高电平,常态为低电平。 由于4个用户线接口电路的测量点相同,故对其它三个用户线接口电路的测量点就不一一叙述,波形均相同,即: TP11=TP21=TP31=TP41 TP12=TP22=TP32=TP42 TP13=TP23=TP33=TP43 TP14=TP24=TP34=TP44 (二)二\四线变换电路 在该实验系统中,二\四线变换由用户线接口电路中的语音单元电路实现,图2-6为电路的功能框图,该电路完成二线–––单端之间信号转换,在MH88612C内部电路中已经完成了该变换。 T TR R 图2-6 二/四线变换功能框图 二\四线变换的作用就是把用户线接口电路中的语音模拟信号(TR)通过该电路的转换分成去话(T)与来话(R),对该电话的要求是: 1、将二线电路转换成四线电路; 2、信号由四线收端到四线发端要有尽可能大的衰减,衰减越大越好; 3、信号由二线端到四线发端和由四线收端到二线端的衰减应尽可能小,越小越好; 4、应保持各传输端的阻抗匹配; 以便于PCM编译码电路形成发送与接收的数字信号。 五、实验内容 1、参考有关程控交换原理教材中的用户线接口电路等单节,对照该实验系统中的电路,了解其电路的组成与工作过程。 2、通过主叫、被叫的摘、挂机操作,了解B、R、S等功能的具体作用。 六、实验步骤 1. 接上交流电源线。 2. 将K11~K14,K21~K24,K31~K34,K41~K44接2,3脚;K70~K75接2,3脚;K60~K63接2,3脚。 3. 先打开“交流开关”,指示发光二极管亮后,再分别按下直流输出开关J8,J9,此时实验箱上的五组电源已供电,各自发光二极管亮。 4. 按“复位”键进行一次上电复位,此时,CPU已对系统进行初始化处理,显示电路循环显示“P”,即可进行实验。 5. 用户1,用户3接上电话单机。 6. 用户电话单机的直流供电(B)的观测。(现以用户1为例) 1) 用户1的电话处于挂机状态,用三用表的直流档测量TP1A,TP1B对地的电压,TP1A为-48V,TP1B为0V,它们之间电压差为48V。 2) 用户1的电话处于摘机状态,用三用表的直流档测量TP1A,TP1B对地的电压,TP1A为-10V左右(此时的电压与电话的内阻抗有关,所以每部电话的测量值不一定相同),TP1B为-3.7V左右。 以上给出的电压值只是作为参考。 7. 观察二/四线变换的作用。 1) 用正常的呼叫方式,使用户1、用户3处于通话状态。 2) 当用户1对着电话讲话时(或按电话上的任意键),用示波器观察TP11上的波形,为语音信号(或双音多频信号),不讲话时无信号。 3) 当用户1听到用户3讲话时(或用户3按电话上任意键),用示波器观察TP12上的波形,为语音信号(或双音多频信号),对方不讲话时无信号。 4) 用示波器观察TP1A。不管是用户1讲话还是用户3讲话(或按电话上的任意键)此测试点都有语音波形(或双音多频信号)。 8. 摘、挂机状态检测的观测。 1) 当用户1的电话摘机时,用示波器测量TP13为高电平(4V左右)。 2) 当用户1的电话挂机时,用示波器测量TP13为低电平(0V左右)。 9. 被叫话机振铃(R)的观测。 1) 用户1处于挂机状态,用户3呼叫用户1,即用户3拨打“68”,使用户1振铃。 2)当用户1的电话振铃时,用示波器观察TP14,振铃时TP14为高电平(3V左右);不振铃时TP14为低电平(0V左右)。 七、实验注意事项 当实验过程中出现不正常现象时,请按一下“复位”键,以使系统重新启动。 八、实验报告要求 1、画出本次实验电路方框图,并能说出其工作过程。 2、画出各测量点在各种情况下的波形图。 实验三 程控交换PCM编译码器实验 一、实验目的 1、掌握PCM编译码器在程控交换机中的作用。 2、熟悉单片PCM编译码集成电路TP3067的使用方法。 二、预习要求 1、查阅有关TP3067的使用说明及其应用电路。 2、认真预习程控交换原理中有关这方面的内容。 三、实验仪器仪表 1、主机实验箱 一台 2、电话单机 二台 3、20MHz示波器 一台 4、音频信号源 一台 四、实验电路工作过程 1、PCM编译码器的简单介绍 模拟信号经过编译码器时,在编码电路中,它要经过取样、量化、编码,如图3—1(a)所示。到底在什么时候被取样,在什么时序输出PCM码则由A→D控制来决定。同样PCM码被接收到译码电路后经过译码低通、放大。最后输出模拟信号到话机,把这两部分集成在一个芯片上就是一个单路编译码器,它只能为一个用户服务,即在同一时刻只能为一个用户进行A\D及D\A变换。 编码器把模拟信号变换成数字信号的规律一般有二种,一种是μ律十五折线变换法,它一般用在PCM24路系统中,另一种是A律十三折线非线性变换法,它一般应用于PCM30\32路系统中,这是一种比较常用的变换法,模拟信号经取样后就进行A律十三折变换,最后变成8位PCM码头,在单路编译码器中,经变换后的PCM码是在一个时隙中被发送出去,这个时序号是由A→D控制电路来决定的,而在其它时隙时编码器是没有输出的,即对一个单路编译码器来说,它在一个PCM帧里只在一个由它自己的A→D控制电路决定的时隙里输出8位PCM码,同样在一个PCM帧里,它的译码电路也只能在一个由它自己的D—A控制电路决定的时序里,从外部接收8位PCM码。 其实电路编译码器的发送时序和接收时序还是可由外部电路来控制的,编译码器的发送时序由A→D控制电路来控制,而A→D控制电路还是受外部控制电路的控制,同样在译码电路中D→A控制电路也受外部控制电路的控制,这样,我们只要向A→D控制电路或D→A控制电路发某种命令即可控制单路编译码器的发送时序和接收时序号,从而也可以达到总线交换的目的,但各种单路编译码器对其发送时序和接收时序的控制方式都有所不同。象有些编译器就有二种方式,一种是编程法,即给它内部的控制电路输进一个控制字,令其在某某时隙干什么工作,另一种是直接控制,这时它有两个控制端,我们定义为FSX和FSr,要求FSX和FSr是周期性的,并且它的周期和PCM的周期要相同,都为125μS,这样,每来一个FSX,其中codec就输出一个PCM码,每来一个FSr,其codec就从外部输入一个PCM码。 图3-1(b)是PCM的译码电路方框图,它的工作过程同图3-1(a)的工作过程完全相反,因此这里就不再讨论了。 (a)A→D电路 (b)D→A电路 图3—1 A\D及D\A电路框图 2.在本实验系统的PCM编译码电路中,器件为美国国家半导体公司的TP3067。图3-2是它的管脚排列图。 图3-2 TP3067管脚排列图 其引脚符号说明 符号 功能 VP0+ 接收功率放大器的非倒相输出 GNDA 模拟地,所有信号均以该引脚为参考点 VP0- 接收功率放大器的倒相输出 VPI 接收功率放大器的倒相输入 VFRO 接收滤波器的模拟输出 VCC 正电源引脚,VCC=+5V±5% FSR 接收帧同步脉冲,它启动BCLKR,于是PCM数据移入DR,FSR为8KHz脉冲序列。 DR 接收帧数据输入,PCM数据随着FSR前沿移入DR BCLKR\CLKSESL 在FSR的前沿后把数据移入DR的位时钟,其频率可从64KHz至2.48MHz。另一方面它也可能是一个逻辑输入,以此为在同步模式中的主时钟选择频率1.536MHz\1.544MHz或2.048MHz,BCLKR用在发送和接收两个方向(见表3-1) MCLKR\PDN 接收主时钟,其频率可以为1.536MHz、1.544MHz或2.148MHz,它允许与MCLKX异步,但为了获得最佳性能应当与MCLKX同步,当MCLKR连续联在低电位时,CLKX被选用为所有内部定时,当MCLKR连续工作在高电位时,器件就处于掉电模式。 MCLKX 发送主时钟,其频率可以是1.536MHZ,1.544MHZ或2.048MHz,它允许与MCLKR异步,同步工作能实现最佳性能。 BCLKX 把PCM数据从DX上移出的位时钟,其频率可 64kHz变至2.048MHz,但必须与MCLKX同步。 DX 由FSX启动的三态PCM数据输出 FSX 发送帧同步脉冲输入,它启动BCLKX并使DX上PCM数据移出DX上。 ANLB 模拟环回路控制输入,在正常工作时必须置为逻辑“0”当拉到逻辑“1”时,发送滤波器和发送前置放大器输出的连接线被断开,开而改为和接收功率放大器的VP0+输出连接。 GSX 发送输入放大器的模拟输出。用来在外部调节增益。 VFXI- 发送输入放大器的倒相输入。 VFXI+ 发送输入放大器的非倒相输入。 VBB 负电源引脚,VBB= -5V±5%。 3、PCM编译码电路的工作时钟 由上述电路分析可知,PCM编译码电路所需的工作时钟为2.048MHZ,FSR、FSX帧同步信号为8KHZ窄脉冲。它们的时序关系如图3-3 TP2048 0 TPTS0~ TPTS7 0 图3—3 PCM编译码工作钟各测量点波形图 图3-4 PCM编解码电原理图 五、实验内容 PCM编译码(C)的功能实验 六、实验步骤 1. 接上交流电源线。 2. 将K11~K14,K21~K24,K31~K34,K41~K44接2,3脚;K70~K74接2,3脚,K75接1,2脚;K60~K63接2,3脚;KTS7接2,3脚;K51、K52接2、3脚。 3. 先打开“交流开关”,指示发光二极管亮后,再分别按下直流输出开关J8,J9,此时实验箱上的五组电源已供电,各自发光二极管亮。 4. 按“复位”键进行一次上电复位,此时,CPU已对系统进行初始化处理,显示电路循环显示“P”,即可进行实验。 5. 将一外加音频信号正弦波(VP-P为1.5伏,频率为1KHZ左右)接入至TPIN输入端(在实验箱上面中部)。 6. 用示波器逐点观察TPIN、TPDT、TPDTMF各测量点波形。 7. 慢慢增加外加音频信号的幅值,并用示波器观察TPDTMF的波形的变化。 说明:图3-5是PCM编译码输入输出波形图。有一点需注意,PCM编译码电路中,在没有外加信号输入时,PCM编码电路还是有输出的,此时该芯片对输入随机噪声进行编译码,一旦有信号输入,它会立即对输入信号进行编码。 TPIN 0 t TPTS6 t 125uS TPDT 0 t TPDTMF 0 t 图3-5 PCM编译码电路输入、输出波形图 七、实验注意事项 1、在进行PCM实验时,对TP3067芯片要特别小心谨慎操作,+5V、-5V电源必须同时加入,以保证该芯片有接地回路,否则,该芯片特别容易损坏。 2、观测各测量点波形时,示波器探头不能乱碰到其它测量点。 八、实验报告要求 1、画出各测量点的波形,注明在何种状态下测试到的波形。 2、当外加信号源的幅值到达一定值时,TPDTMF外的波形就会失真,这是为什么,分析其原因。 3、写出对实验电路的改进措施,有何体会? 实验四 多种信号音及铃流信号发生器实验 一、实验目的 1、了解电话通信中常用的几种信号和铃流信号的电路组成与产生方法。 2、熟悉这些音信号在传送过程中的技术要求和实现方法。 二、预习要求 预习有关拨号音,忙音,回铃音,铃流等有关内容。 三、实验仪器仪表 1、主机实验箱 一台 2、电话机 二台 3、20MHz示波器 一台 四、电路工作过程 我们知道,在用户话机与电信局的交换机之间的线路上,要沿两个方向传递语言信息。但是,为了接通一个电话,除了上述情况外,还必须沿两个方向传送所需的控制信号。比如,当用户想要通话时,必须首先向程控机提供一个信号,能让交换机识别并使之准备好有关设备,此外,还要把指明呼叫的目的地的信号(被叫)发往交换机。当用户想要结束通话时,也必须向电信局交换机提供一个信号,以释放通话期间所使用的设备。除了用户要向交换机传送信号之外,还需要传送相反方向的信号,如交换机要向用户传送关于交换机设备状况,以及被叫用户状态的信号。 由此可见,一个完整的电话通信系统,除了交换系统和传输系统外,还应有信号系统。 下面是本实验系统的传送信号流程,见图4-1所示。 用户向电信局交换机发送的信号有用户状态信号和号码信号。交换机向用户发送的信号有各种可闻信号与振铃信号(铃流)两种方式。 a、各种可闻信号:一般采用频率为450Hz的交流信号,例如: 拨号音:(Dial tone)连续发送的信号。 回铃音:(Ringing tone)1秒送,4秒断的5秒断续信号,与振铃一致。 忙音:(busy tone)0.35秒送,0.35秒断的0.7秒断续信号。 b、振铃信号(铃流):一般采用频率为25Hz,幅度为75V±15V的交流电压,以1秒送,4秒断的5秒断续方式发送。 在呼叫建立过程中,交换机应向主叫用户发送各种信号音,以使用户能了解连续进展情况和下一步应采取的操作。 用户线 用户线 主叫用户 被叫用户 摘机 拨号音信号 回铃音信号 振铃信号 话音信号 通信建立 忙音信号 挂机(先挂方) 挂机信号 挂机 (用户线信号) 图4-1 本实验系统传送信号流程图 (一)拨号音及产生电路 主叫用户摘机,CPU检测到该用户有摘机状态后,立即送出的音信号,表示可以拨号,当CPU中央处理单元收到第一个拨号脉冲后,应立即给予切断该信号,拨号音用连续的信号音。在本实验系统中,频率为400Hz~450Hz之间,幅度在1.5V~3.5 V之间,图4-2(a)是该电路的框图,图4-2(b)是该原理图。 (a) 450HZ方框图 (b) 450HZ电原理图 图4-2 450Hz拨号音电路图 (二)回铃音及控制电路 回音信号由CPU中央处理单元控制送出,通知主叫用户正在对被叫用户振铃,回铃音信号所用频率也同拨号音频率,继续周期为1秒通,4秒断,与振铃一致。 各国所用的断续周期不同,如日本为1秒断2秒续,重复周期为3秒。美国和加拿大为2秒续,4秒断,重复周期为6秒。我国采用4秒断,1秒续的5秒周期信号。因此在本实验系统中采用大约4秒断,1秒续的重复周期为5秒信号,见图4-3所示。 (a) 方框图 (b) 电原理图 图4-3 回铃音控制产生电路框图及原理图 (三)忙音及控制电路 忙音表示用户处于忙状态,此时用户应挂机等一会再重新呼叫。 在本实验系统中采用大约0.35秒断,0.35秒续的400Hz~450Hz的信号,见图4-4所示。 (a) 方框图 (b) 电原理图 图4-4 忙音控制产生电路框图及电原理图 (四)铃流信号发生器电路 铃流信号的作用是交换机向被叫用户发出,作为呼入信号,一般采用低频电流,如频率有16.6Hz、25Hz、33.3Hz等几种。 它的断续周期同回铃音信号相同,因此,在本实验系统中采用大约4秒断、1秒通的断续信号。图4-5是它的原理方框图,电原理图4-6所示。 图4-5 25HZ铃流发生器框图 图4-6 25Hz铃流发生器电原理图 上述四种信号在本实验系统中均有具体电路实现,然而在程控交换机中,信号音还不止上述几种,在此作一简单介绍,不作实验要求。 图4-7中各测量点的波形 (1)450Hz拨号音电路,其测量点为TP60; (2)回铃音控制电路,其测量点为TP61; (3)忙音控制电路,其测量点为TP62; (4)25Hz铃流号发生器电路,其测量点为TP63; (5)铃流信号输出的变压电路,其测量点为TP64; TP60 +1.5V O t -1.5V f=400~450Hz TP61 4.2V O t 1s 4s TP62 4.2V 0 t 0.35s 0.35s TP63 4.2V 0 t TP64 +50~60V 0 t -50~60V 图4-7 各测量点的波形图 (六)音信号的数字方式产生 众所周知,在数字程控交换机中直接进行交换的是PCM数字信息,在这样的情况下如何使用户接收到信号音(如拨号音,回铃音,忙音等)是一个重要的问题。因为模拟电路产生的信号音是不能通过PCM交换系统的,这就是要求设计一个数字型信号音发生器,使之能向交换网络输出这样一些PCM数字信息,这些数字信息经过非线性译码后能成为一个我们所需的模拟信号音。 1、传统方式产生数字音信号 电路见图4-8所示,可知,这是一种常见的PCM编码方式,400Hz~450Hz的正弦信号由硬件电路实现,再经过PCM编码器电路后,就可输出音信号的PCM数字码流了,经过数字交换网络后,再进行D/A变换还原成正弦信号送往用户电路即可。 图4—8 传统方式产生音信号电原理图 2、用数字电路产生音信号 图4-9是大约450Hz正弦波信号一个周期取样示意图,图4-10是数字电路产生音信号的原理框图。 0 t1 t2 t3 t4 A B C D 图4-9 450Hz正弦波信号取样示意图 图4—10 数字型信号音产生电路原理框图 由此可见,我们只要对正弦信号在理论上以每隔125μs取样一次,并将取样所得的正弦信号幅度按照A律十三折线非线性编码的规律进行计算,变成二进制编码,然后把这些二进制码存贮在EEPROM中,只要每隔125μs对它读出一次即可得到PCM数字信息码流。(注意:TP3067编码输出时,偶数位取反,例如+2.5V的电压编码输入应为 1111 1111,而TP3067输出为 1010 1010。) 五、实验内容 1、用三用表或示波器测量拨号音,忙音、回铃音及铃流信号的各测量点电压或波形,即测量点TP60、TP61、TP62、TP63、TP64。 六、实验步骤 1. 接上交流电源线。 2. 将K11~K14,K21~K24,K31~K34,K41~K44接2,3脚;K70~K75接2,3脚;K60~K63接2,3脚。 3. 先打开“交流开关”,指示发光二极管亮后,再分别按下直流输出开关J8、J9,此时实验箱上的五组电源已供电,各自发光二极管亮。 4. 按“复位”键进行一次上电复位,此时,CPU已对系统进行初始化处理,显示电路循环显示“P”,即可进行实验。 5. 用示波器测量TP60、TP61、TP62、TP63、TP64各点波形。(观察TP61、TP62时示波器应设置为直流档) TP60 TP61 TP62 TP63 TP64 6. 用户1、用户3接上电话单机,用户1呼叫用户3,在呼叫过程中观察TP12的波形。(示波器设为直流档) 1) 用双踪示波器观察TP12的波形和TP60的波形,用户1摘机后听到拨号音时。即TP12与TP60的波形一样为450HZ的三角波信号。 2) 用户1拨完被叫电话号码“88” 后听到回铃音时,用双踪示波器观察TP12的波形和TP61的波形。即当TP61为高电平时(用户1听到回铃音),TP12有450HZ的三角波信号;当TP61为低电平时,TP12无波形。 3) 用户3振铃时,用双踪示波器观察TP3A的波形和TP64的波形。即当用户3振铃时,TP3A与TP64的波形一样;不振铃时,TP3A无波形。 4) 用户3摘机通话后,用户3先挂机,此时用户1听到忙音,用双踪示波器观察TP12的波形和TP62的波形。即当TP62为高电平时(用户1听到忙音),TP12有450HZ的三角波信号;当TP62为低电平时,TP12无波形。 七、实验注意事项 1、此项实验必须要由两人合作完成。 2、在测量25Hz的铃流信号发生器输出的波形时,一定要注意三用表的量程和示波器的电压量程档,以防止损坏仪器和其它电子器件。 八、实验报告要求 1、认真画出实验过程各测量点波形,并进行分析。 2、画出电路组成框图。 3、在实验过程中遇到的其它情况作出记录,并进行分析。 实验五 双音多频DTMF接收实验 一、实验目的 1、了解电话号码双音多频信号在程控交换系统中的发送和接收方法。 2、熟悉该电路的组成及工作过程。 二、预习要求 1、认真预习有关双音多频等相关内容。 三、实验仪器仪表 1、主机实验箱 一台 2、电话单机 两台 3、20MHz示波器 一台 四、实验电路工作过程 (一)双音多频拨号简单介绍 在电话单机中,有两种拨号方式,即脉冲拨号和双音多频拨号。 双音多频拨号方式中的双音多频是指用两个特定的单音频信号的组合来代表数字或功能,两个单音频的频率不同,所代表的数字和功能也不同,在双音多频电话机中有16个按键,其中有10个数字键0~9,6个功能键*、#、A、B、C、D,按照组合的原理,它必须有8种不同的单音频信号,由于采用的频率有8种,故又称之为多频,又因以8种频率中任意抽出2种进行组合,又称其为8中取2的编码方式。 根据CCITT的建议,国际上采用697Hz、770Hz、852Hz、941Hz、1209Hz、1336Hz、1477Hz和1633Hz,把这8种频率分成两个群,即高频群和低频群,从高频群和低频群中任意各抽出一种频率进行组合,共有16种不同组合,代表16种不同数字或功能,见表5-1。 表5-1 1209 1336 1447 1633 697 1 2 3 A 770 4 5 6 B 852 7 8 9 C 941 * 0 # D 表中*、# 键作特殊功能用(如闭音、重发)等,A、B、C、D留作它用,例如拨数字号码“8”,则发双音多频信号频率为fH=1336Hz、fL=852Hz。 双音多频,简写DTMF(DTMF=Dual Tone Multirequency) fH (C1~C4) (R1~R4) fL 图5-1 一个典型的DTMF发送电路原理框图 DTMF发送器的原理与构成如图5-1所示,它主要包括: (1)晶体振荡器––––外接晶体(通常采用3.579545MHz)与片内电路构成振荡器,经分频产生参考信号。 (2)键控可变时钟产生电路–––––它是一种可控分频比的分频器,通常由n级移位寄存器与键控反馈逻辑单元组成。 (3)正弦波产生电路–––––它由正弦波编码器与D/A变换器构成,通常,可变速时钟信号先经5位移位寄存器,产生一组5位移位代码,再由可编程逻辑阵列(PLA)将其转换成二进制代码,加到D/A变换器形成台阶型正弦波。显然台阶的宽度等于时钟频率的倒数,这样形成的正弦波信号频率必然对应时钟的速率和按键的号码。 (4)混合电路–––––将键盘所对应产生的行、列正弦波信号(即低、高群fL、fH)相加、混合成双音信号输出。 (5)附加功能单元,如有时含有单音抑制,输出控制(禁止)、双键同按无输出等控制电路。 DTMF发送器按输入控制方式可分为键盘行列控制和BCD接口控制两种。它们的控制部分真值表分别示于表5-2、表5-3。 表5-2键盘控制接口功能真值表 输入 行 列 R1 R2 R3 R4 C1 C2 C3 C4 发送 fL(HZ) 697 770 852 941 频率 fH(HZ) 1209 1336 1477 1633 表5-3 BCD码控制接口功能真值表 BCD 码 输 入 发 送 频 率 R1 R2 R3 R4 fL(HZ) fH(HZ) 0 0 0 0 941 1336 0 0 0 1 697 1209 0 0 1 0 697 1336 0 0 1 1 697 1477 0 1 0 0 770 1209 0 1 0 1 770 1336 0 1 1 0 770 1477 0 1 1 1 852 1209 1 0 0 0 852 1336 1 0 0 1 852 1477 (二)双音多频接收电路 图5-2 典型DTMF接收器原理框图 DTMF接收器包括DTMF分组滤波器和DTMF译码器,其基本原理如图5-2所示。DTMF接收器先经高、低群带通滤器进行fL/fH区分,然后过零检测、比较,得到相应于DTMF的两路fL、fH信号输出。该两路信号经译码、锁存、缓冲,恢复成对应于16种DTMF信号音的4比特二进制码(D1~D4)。 图5-3 MT8870芯片及管脚排列图 在本实验系统电路中,DTMF接收器采用的是MT8870芯片。 图5-3是该芯片的管脚排列图。 1、该电路的基本特性 (1)提供DTMF信号分离滤波和译码功能,输出相应16种DTMF频率组合的4位并行二进制码。 (2)可外接3.579545MHz晶体,与内含振荡器产生基准频率信号。 (3)具有抑制拨号音和模拟信号输入增益可调的能力。 (4)二进制码为三态输出。 (5)提供基准电压(VDD\2)输出。 (6)电源 +5V (7)功耗 15mw (8)工艺 CMOS (9)封装 18引线双列直插 2、管脚简要说明 引出端符号说明 IN+,IN- 运放同、反相输入端,模拟信号或DTMF信号从此端输入。 FB 运放输出端,外接反馈电阻可调节输入放大器的增益。 VREF 基准电压输出。 IC 内部连接端,应接地。 OSC1,OSC0 振荡器输入、输出端,两端外接3.579545MHz晶体。 EN 数据输出允许端,若为高电平输入,即允许D01~D04输出, 若为低电平输入,则禁止D01~D04输出。 D01~D04 数据输出,它是相应于16种DTMF信号(高,低单音组合) 的4位二进制并行码,为三态缓冲输出。 CI\GT 控制输入,若此输入电压高于门限值VTSt,则电路将接收 DTMF单音对,并锁存相应码字于输出,若输入电压低于VTSt,则电路不接收新的单音对。 EC0 初始控制输出,若电路检测出一可识别的单音对,则此端即变为高电平,若无输入信号或连续失真,则EC0返回低电平。 CID 延迟控制输出,当一有效单音对被接收,CI超过VTSt,输出锁存器被更新,则CID为高电平,若CI低于VTSt,则CID返至低电平。 VDD 接正电源,通常接+5V。 VSS 接负电源,通常接地。 3、电路的基本工作原理 它完成典型DTMF接收器的主要功能:输入信号的高,低频组带通滤波、限幅、频率检测与确认、译码、锁存与缓冲输出及振荡,监测等,具体说来,就是DTMF信号从芯片的输入端输入,经过输入运放和拨号音抑制滤波器进行滤波后,分两路分别进入高,低频组滤波器以分离检测出高、低频组信号。 如果高,低频组信号同时被检测出来,便在EC0输出高电平作为有效检测DTMF信号的标志;如果DTMF信号消失,则EC0即返至低电平,与此同时,EC0通过外接R向C充电,得到CI,GT。(通常此两端相短接)积分波形,如图5-4所示,若经tGTP延时后,CI,GT。电压高于门限值VTst时,产生内部标志,这样,该电路在出现EC0标志时,将证实后的两单音送往译码器,变成4比特码字并送到输出锁存器,而CI标志出现时,则该码字送到三态输出端D01——D04,另外,CI信号经形成和延时,从CID端输出,提供一选通脉冲,表明该码字已被接收和输出已被更新,如若积分电压降到门限VTst以下,使CID也回到低电平。 图5-4是它的工作时序波形图 图5-4 MT8870的时序图 图5-7 DTMF信号测电路原理框图 其中,双音多频信号测试点为TPDTMF,数据输出允许端EN的测量点为TPSTD,它经反相器反向后得到。数据输出则可以通过发光二极管D103~D100显示出来,它代表的数是8421码。 五、实验内容 1、用示波器观察并测量发送DTMF信号的波形,在用户线接口电路的输入端进行测量,即在用户1用户线接口电路的测量点TP1A与TP1B进行测量。 2、用示波器观察并测量DTMF信号接收的波形TPDTMF,以及在MT8870电路输出端TPSTD。 其中,TPDTMF为双音多频信号的测量点 TPSTD为数据输出允许端EN的反相测量点,识别到双音多频信号时为低,否则就为高。 六、实验步骤 1. 接上交流电源线。 2. 将K11~K14,K21~K24,K31~K34,K41~K44接2,3脚;K71~K75接2,3脚;K61~K63接2,3脚,K70、K60接1、2脚。 3. 先打开“交流开关”,指示发光二极管亮后,再分别按下直流输出开关J8、J9,此时实验箱上的五组电源已供电,各自发光二极管亮。 4. 按“复位”键进行一次上电复位,此时,CPU已对系统进行初始化处理,显示电路循环显示“P”,即可进行实验。 5. 用户1、用户3接上电话单机。 6. 用户1摘机,开始拨打号码,即按电话单机上的任意键,用示波器的直流档对以下测量点进行观察并记录波形: 1) TPDTMF:当有键按下时有双音多频信号,无键按下时无信号。 2) TPSDT:当有键按下时该点是低电平,无键按下时该点为高电平。 3) TP11:当有键按下时有双音多频信号,无键按下时无信号。 7. 按不同的键时,其双音多频信号的波形不一样,要仔细观察。 8. 在按键过程中观察发光二极管D103~D100与所按键值的关系:(显示二极管是在该按键抬起的瞬间发生改变的) D103~D100对应的是8421码,如接下的键值为5时,对应的码字为0101,发光二极管D102,D100发光。在按键的过程中观察所按键值与发光二极管是否满足上述对应关系。 七、注意事项 1、使主机实验箱加电处于正常工作状态,并严格遵循操作规程。 2、在测量观察上述各测量点波形时,两位同学一定要配合好,即一位同学按照正常拨打电话的顺序进行操作,另一位同学要找到相应的测量点和有关电路单元,小心慎重操作,仔细体会实验过程中的各种实验现象。 3、在测量TP1A时,示波器接头的另一接地线接到TP1B上。 八、实验报告要求 1、画出DTMF接收电路的电原理图,并能简要分析工作过程。 2、画出在接收DTMF过程中各有关测量点在有、无信号状态的波形,并能作简要的分析与说明。 实验六 空分交换网络原理 系统实验 一、实验目的 1、掌握程控交换的基本原理与实现方法。 2、通过对MT8816芯片的实验,熟悉空分交换网络的工作过程。 二、预习要求 认真预习《程控交换原理》教材中的相关内容。 三、实验仪器仪表 1、主机实验箱 一台 2、电话单机 二~四台 3、20MHz示波器 一台 四、实验电路工作过程 (一)原理说明 其实,我们在实验一中已经对实验系统中的交换网络有了一些了解,下面我们则比较详细分析它的工作过程。它是由两大部分组成,即话路部分和控制部分,话路部分包括交换网络,用户电路出中继电路,入中继电路,收号器,音信号发生器以及信号设备等;控制部分则是一台电子计算机,它包括中央处理器,存储器和输入、输出设备。 在我们本实验系统中,交换网络的方框图见图6-1所示。 图6-1 实验系统的交换网络结构方框图 (二)电子接线器简介 早先的程控空分交换机的网络,采用的接线器是机械的,也就是说它由机械接点组成的。然后由这些机械接线器组成交换网络。这些机械接线器包括小型纵横接线器、螺簧接线器、剩簧接线器、笛簧接线器……五花八门,品种繁多。由于目前已不采用,所以不在这里介绍。当前的空分交换机采用的是电子接线器。这是从MOS型超大规模接线器。目前,生产电子接线器的电子化成为可能。电子接线器就是MOS型的空分接线器。目前,生产电子接线器的厂家很多,型号也各有不同,如Mitel公司的MT8804,MT8812,MT8816等,MOTOROLA公司的142100,145100等,SGS公司的M089,M099,M093等。这些电子接线器在我国生产和引进的空分用户交换机中均能见到。 下面将重点分析MT8816芯片的工作过程。 (1)MT8816基本特性 由图6-2可见,该芯片是8×16模拟开关阵列,它内含7–––128线地址译码器,控制锁存器和8×16交叉点开关阵列,其电路的基本特性为: 1、提供8×16模拟开关阵列功能 2、导通电阻(VDD=12V) 45Ω 3、导通电阻偏差(VDD=12V) 5Ω 4、模拟信号最大幅度 12VPP 5、开关带宽 45MHZ 6、非线性失真 0.01% 7、电源 4.5~13.2V 8、工艺 CMOS 9、封装 双列直插式 (a) MT8816管脚排列图 VCC VEE VSS COL0 COL7 (b) MT8816功能方框图 图6-2 MT8816功能方框图 (2)MT8816管脚说明 下面将对该管脚功能作一简要说明 COL0~COL7 列输入\输出,开关阵列8路列输入或输出。 ROW0~ROW15 行输入\输出,开关阵列16路行输入或输出。 ACOL0~ACOL2 列地址码输入,对开关阵列进行列寻址。 AROW0~AROW3 行地址码输入,对开关阵行进行行寻址。 ST 选通脉冲输入,高电平有效,使地址码与数据得以控制相应开关的通、断。在ST上升沿前,地址必须进入稳定态,在ST下降沿处,数据也应该是稳定的。 DI 数据输入,若DI为低电平,不管CS处于什么电平,均将全部开关置于截止状态。 RESET 复位信号输入,若为高电平,不管CS处于什么电平,均将全部开关置于截止状态。 CS 片选信号输入,高电平有效。 VDD 正电源,电压范围为4.5~13.2V。 VEE 负电源。 VSS 数字地。 (3)MT8816工作原理 下面我们将对MT8816型电子接线器作一介绍,使大家了解电子接线器的结构原理。其它型号的电子接线器也大同小异。 MT8816是CMOS大规模集成电路芯片。这是一片8×16模拟交换矩阵,如图6-3所示 COL7 COL6 COL5 COL4 COL3 COL2 COL1 COL0 图6-3 MT8816交换矩阵示意图 图中有8条COL线(L0—L7)和16条ROW线(J1~J15),形成一个模拟交换矩阵。它们可以通过任意一个交叉点接通。芯片有保持电路,因此可以保持任一叉接点处于接通状态,直至来复信号为止。CPU可以通过地址线ACOL2 ~ACOL0和数据线AROW3~AROW0进行控制和选择需要接通的交叉点号。ACOL2 ~ACOL0管COL7 ~COL0中的一条线。ACOL7 ~ACOL0编成二进制码,经过译码以后就可以接通交叉点相应的COLi;数据线AROW3~AROW0管ROW15~ROW0中的一条。AROW3~AROW0是不编码的,某一条AROW7线为“1”,控制相应ROWi的以接通有关的交叉点。例如要接通L1和J8之间的交叉点。这时一方面向ACOL0 ~ACOL2。送001,另一方面向AROW3送“1”。当送出地址启动门ST时,就可以将相应交叉点接通了,图中还有一个端子叫“CS”片选端。当CS为“1”时,全部交叉点就打开了。 电子接线器速度快,驱动要求低,并能自己保持。因此使用起来十分方便。 其它型号的芯片其基本原理也大致相同。区别只是容量不一样。 电子接线器的优点是体积小,价格便宜,它的缺点是导通电阻较机械接点大(一般几十欧姆到一百欧姆),并且串音衰耗也较机电的接线器小,因此电子接线器组成的交换网络和由机械接点组成的交换网络也有所区别。 五、实验内容 利用空分自动交换网络进行两部电话单机通话,对工作过程作记录。 六、实验步骤 1. 接上交流电源线。 2. 将K11~K14,K21~K24,K31~K34,K41~K44接2,3脚;K70~K75接2,3脚;K60~K63接2,3脚。 3. 先打开“交流开关”,指示发光二极管亮后,再分别按下直流输出开关J8、J9,此时实验箱上的五组电源已供电,各自发光二极管亮。 4. 按“复位”键进行一次上电复位,此时,CPU已对系统进行初始化处理,显示电路循环显示“P”,即可进行实验。 5. 将四个用户接上电话单机。 6. 首先用户1呼叫用户3,并进行通话,然后用户2呼叫用户4通话。 7. 用双踪示波器观察 1) 当用户1说话时 (或按电话上的任意键),TP11(用户1的去话)、TP32(用户3的来话)有语音波形(或双音多频信号),且波形一致,只是TP11的幅值比TP32的幅值大;不说话时无波形。 2) 当用户3说话时(或按电话上的任意键),TP31(用户3的去话)、TP12(用户1的来话)有语音波形(或双音多频信号),且波形一致,只是TP31的幅值比TP12的幅值大;不说话时无波形。 3) 当用户2说话时(或按电话上的任意键),TP21(用户2的去话)、TP42(用户4的来话)有语音波形(或双音多频信号),且波形一致,只是TP21的幅值比TP42的幅值大;不说话时无波形。 4) 当用户4说话时(或按电话上的任意键),TP41(用户4的去话)、TP22(用户2的来话)有语音波形(或双音多频信号),且波形一致,只是TP41的幅值比TP22的幅值大;不说话时无波形。 七、实验报告要求 1、画出本实验系统自动交换网络的电路框图,并分析工作过程。 实验七 程控交换原理编程调试实验 一、实验目的 1、了解CPU的工作原理及各种控制过程。 2、体会程控交换原理实验系统进行电话通信时的控制过程。 二、预习要求 1、熟练使用8051系列单片机仿真器。 2、预习《MCS-51单片机原理与应用》。 三、实验设备 1、主机实验箱 一台 2、电话单机 四台 3、PC机 一台 4、MCS-51系统单片机仿真器 一套 四、实验编程 本实验分为七个单元实验,每个实验单元完成对一个单元电路的控制或一种系统设置。图7-1为本实验总体框图。 图7-1 实验总体框图 在本次实验中,我们通过实际编程调试,实现程控交换机中CPU对话路设备的控制,进一步加深对程控交换网络工作原理的认识。在实验四中我们已经了解到实验系统中已由硬件产生了各种信号音,在电话拨打和接续过程中,CPU自动将各种信号音按照电话接续规则接入电话机,使我们能自如地拨打电话,各种信号音都是通过可由计算机控制的开关接入电话线路的,CPU根据电话接续规则,打开或关闭各种信号音的接入开关,使我们能从拨打电话的过程中听到各种信号音。 注意,系统定义:用户1系统定义为第1路; 用户2系统定义为第2路; 用户3系统定义为第3路; 用户4系统定义为第4路; 下面我们按图7-1将实验系统通过MCS-51单片机仿真器连接到计算机,打开单片机仿真调试软件,编辑、修改、编译源程序,下载执行CPU控制指令,
1.46MB
基于ARM的数字式磁通门磁强计设计
2021-01-26基于差分式磁通门磁强计的工作原理,设计了一种基于ARM的数字式磁通门磁强计,替代了传统模拟电路对磁强计输出信号进行处理,采用ARM自带的12 bit A/D将磁强计信号转换成数字信号,使用ARM微控制器进行相敏检测、滤波和PID控制,用脉冲宽度调制(PWM)输出反馈信号,结合反馈电阻构成闭环系统。通过实验测试,该磁强计的量程为±60 000 nT,分辨率为1 nT,线性度可达到3.3×10-4,灵敏度温度系数为1.9×10-4/℃。采用基于ARM的数字式磁通门磁强计设计方案,提高了磁强计对环境温度的抗干扰能力。
1.64MB
经典c语言教程(嵌入式)
2008-12-30超级经典的c语言学习教程,对入门者或者专业程序员都很有帮助。
131KB
嵌入式系统/ARM技术中的基于LabVIEW的设备远程监测系统研究
2020-11-09一个典型的远程监测系统由硬件系统和软件系统两部分组成。 (1)硬件系统。监测系统硬件结构如图1所示。此系统的基本工作原理是,ZK-3VIC型振动实验台作为被测对象,加速度传感器将振动信号转换为电压信号,由于传感器拾取的信号比较微弱,且常伴有噪声的干扰,所以要对信号进行滤波和放大,这些工作由INV多功能抗混频滤波放大器来完成,DAQCard-6062E将经滤波放大后的模拟信号转换为数字信号,以便于微机处理,服务器和客户机为两台计算机。 (2)软件系统。软件是状态监测系统的核心,选择合适的软件开发平台,可以提高系统性能,缩短开发周期,降低开发费用。在此,采用LabVIEW 7
549KB
三位数字电容表说明书
2010-04-13课 程 设 计 任 务 书 课程设计题目 三位数电容表 功能 技术指标 设计一个电路简洁、精度高及测量范围宽的电容表,将待测电容的电容值显示到数码管,可显示 三位数字 工作量 适中 工作计划 3月8日 查资料,分析原理 3月9日 画原理图,列元器件表 3月11日 购买元器件 3月12日 安装电路 3月14日 电路调试 3月19日 结题验收 3月20日 撰写说明书 3月25日 交说明书并准备答辩 3月26日 答辩 指导教师评语 指导教师: 2010年3月 23日 目录 第1章 绪论 1 1.1
-
下载
xml解析源码.zip
xml解析源码.zip
-
下载
KP1488W SOT-323 TS1.pdf
KP1488W SOT-323 TS1.pdf
-
下载
C225888_0.28英寸%2C四位%2C白光%2C共阳LED数码管%2C插件_2018-07-20.PDF
C225888_0.28英寸%2C四位%2C白光%2C共阳LED数码管%2C插件_2018-07-20.PDF
-
下载
LSTM_GAN修改.ipynb
LSTM_GAN修改.ipynb
-
下载
公安合成指挥体系总体方案.pptx
公安合成指挥体系总体方案.pptx
-
下载
C++基础与提高-王桂林-3rd .pdf
C++基础与提高-王桂林-3rd .pdf
-
下载
森林防火方案.pptx
森林防火方案.pptx
-
下载
基于位置大数据的智慧景区解决方案.pptx
基于位置大数据的智慧景区解决方案.pptx
-
下载
智简园区智慧教室解决方案.pptx
智简园区智慧教室解决方案.pptx
-
下载
javaWeb 开发技术课件.docx
javaWeb 开发技术课件.docx
