没有合适的资源?快使用搜索试试~ 我知道了~
针对传统的滤波器设计方法效率低、方法复杂、不能满足高效高精度的需要等缺点,基于MATLAB研究了分别使用窗函数法和双线性变换法的FIR和IIR滤波器。将加入噪声的信号分别通过两种滤波器,滤除加入的噪声,对滤波前后的信号进行对比分析。通过仿真实验表明,FIR滤波器与IIR的Butterworth滤波器都能很好地克服传统滤波器的不足,通过语谱图直观地对比发现基于窗函数法设计FIR滤波器比双线性法设计的Butterworth滤波器能更好地达到预定的去噪效果。
资源推荐
资源详情
资源评论

















FIR滤波器与滤波器与IIR滤波器去噪效果对比研究滤波器去噪效果对比研究
针对传统的滤波器设计方法效率低、方法复杂、不能满足高效高精度的需要等缺点,基于MATLAB研究了分别
使用窗函数法和双线性变换法的FIR和IIR滤波器。将加入噪声的信号分别通过两种滤波器,滤除加入的噪声,对
滤波前后的信号进行对比分析。通过仿真实验表明,FIR滤波器与IIR的Butterworth滤波器都能很好地克服传统
滤波器的不足,通过语谱图直观地对比发现基于窗函数法设计FIR滤波器比双线性法设计的Butterworth滤波器能
更好地达到预定的去噪效果。
摘 摘 要要: 针对传统的滤波器设计方法效率低、方法复杂、不能满足高效高精度的需要等缺点,基于MATLAB研究了分别使
用
关键词关键词:
0 引言引言
在噪音信号处理过程中,所处理的信号往往混有噪音,从接收到的信号中消除或减弱噪音是信号传输和处理中十分重要的
问题[1-3]。常用去噪方法有图像去噪法、信号去噪法、小波去噪法等。郑毅贤利用压缩感知图像去噪法能够有效地保留较多的
图像细节[4];谢黎明等人设计出基于MATLAB的IIR数字滤波器,分析表明该 IIR滤波器具有良好的去噪性能[5];张廷尉等人
设计出基于MATLAB的Butterworth数字低通滤波器,并对一段音频信号进行滤波去噪处理,经过去噪后的音频信号听觉效果
变得低沉[6]。数字滤波器分为2类:无限冲击响应(IIR)滤波器和有限冲击响应(FIR)滤波器。FIR滤波器具有稳定性好、
精度高、积累误差小、易于计算机辅助设计等优点[7-8],但存在计算量大的缺点。IIR滤波器具有结构简单、效率高、与模拟
滤波器有对应关系、易于解析控制及计算机辅助设计等优点[9],但稳定性较差,易产生溢出、噪声、误差。利用数字滤波
器,可改变信号中所含频率分量的相对比例或滤除某些频率分量。
本文基于MATLAB分别使用窗函数法和双线性变换法设计FIR和IIR滤波器,将加噪信号分别通过两种滤波器滤除噪声,对
滤波前后的信号进行对比分析。仿真实验表明,基于窗函数法的FIR滤波器去噪效果比双线性法设计的IIR滤波器好。
1 加噪处理加噪处理
预先录制一段语音,内容为“基于MATLAB的语音信号处理及特性分析”,人声的频率范围为300 Hz~ 3 000 Hz,3 kHz
以上的频率分量属于采集过程中由于设备和环境而引入的噪声。人声的频率范围低于3 kHz,且通过观察原信号的频谱可得,
频率为5kHz的频率分量能量较小,因此选择加上频率为5 kHz的高频余弦噪声并且绘制叠加噪声之后的语音信号时域图形及频
域图形,可以在视觉上与原始信号图形对比。使用subplot函数将加噪声前后的信号时域与频率图画在同一幅图上进行对比,
如图1所示。与原始信号对比,加噪信号能量明显变大,且在频率为5 kHz的位置能量有了很大的增强。使用sound函数播放加
噪语音信号,语音的背景出现尖锐鸣声,这是由加入的余弦噪声造成的,鸣声的尖锐程度取决于余弦噪声的频率,但如果频率
过高,超过人耳的听力范围,就无法察觉加噪信号。余弦噪声是单一频率的、高频的,为了滤除噪声,只需要将噪音信号通过
一个低通滤波器,就可将余弦噪声及录制过程中引入的噪声滤除。
2 窗函数法设计窗函数法设计FIR滤波器滤波器
数字滤波器可以分为IIR数字滤波器和FIR数字滤波器。与IIR数字滤波器相比,FIR数字滤波器的实现是非递归的,稳定性
好,精度高。更重要的是FIR数字滤波器在满足幅度响应要求的同时,可以获得严格的线性相位。然而,由于阶次较高,FIR
滤波器的延迟也要比同样性能的IIR滤波器大得多。
窗函数法设计FIR滤波器,使用fir1函数,B=FIR1(N,WN,′FTYPE′,WINDOW)。其中:
(1)N为滤波器的阶数;
(2)WN为滤波器的截止频率,是一个0~1的数。如果WN是含有两个数的向量,则函数返回一个带通滤波器;
(3)FTYPE=′HIGH′时,设计的是高通滤波器,FTYPE=′STOP′时,设计的是带阻滤波器,无此参数时,默认为低通滤
波器;
(4)WINDOW为指定窗函数,矩形窗为BOXCAR(N),汉宁窗为HANNING(N),海明窗为HAMMING(N),布莱
克曼窗为BLACKMAN(N),凯撒窗为KAISER(N,BETA),无此参数时,默认为HAMMING窗。
资源评论


weixin_38600017
- 粉丝: 3
- 资源: 969
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


安全验证
文档复制为VIP权益,开通VIP直接复制
