没有合适的资源?快使用搜索试试~ 我知道了~
身份认证技术有了很大的发展,随之不断出现的是各种伪造合法用户信息的欺诈手段。针对这一问题,提出一种基于深度学习人脸活体检测算法,分析了真实人脸和欺诈人脸之间的区别,将真实人脸和照片进行数据去中心化、zca白化去噪声、随机旋转等处理;同时,利用卷积神经网络对照片的面部特征进行提取,提取出来的特征送入神经网络训练、分类。算法在公开的数据库NUAA上进行了验证,实验结果表明该方法降低了计算的复杂度,提高了识别准确率。
资源推荐
资源详情
资源评论













基于深度学习的人脸活体检测算法基于深度学习的人脸活体检测算法
身份认证技术有了很大的发展,随之不断出现的是各种伪造合法用户信息的欺诈手段。针对这一问题,提出一
种基于深度学习人脸活体检测算法,分析了真实人脸和欺诈人脸之间的区别,将真实人脸和照片进行数据去中
心化、zca白化去噪声、随机旋转等处理;同时,利用卷积神经网络对照片的面部特征进行提取,提取出来的特
征送入神经网络训练、分类。算法在公开的数据库NUAA上进行了验证,实验结果表明该方法降低了计算的复杂
度,提高了识别准确率。
0 引言引言
随着时间的推移,生物特征识别技术在不断地发展,并且已经广泛使用到诸如指纹识别和虹膜识别的身份认证技术等领
域。其中,人的面部都有很大的差异,具有不容易丢失、不容易窃取、对用户友好等广泛优点,容易被大众所接受。人脸识别
技术应用较广泛,很好地帮助了人们的生活和工作,如:案件侦破、上班打卡。但是人脸识别系统仍然容易受到攻击,由于社
交媒体的普及,面部图像和视频很容易获得
[1]
,例如演示攻击可以记录一个人的面部信息,在屏幕上重放,甚至通过3D人
脸
[2]
或者VR
[3]
伪造来记录人的面部信息,这带来了极具挑战性的安全问题。身份信息真实性的验证十分重要,因此活体检
测技术也是研究的重中之重。活体检测是一种防止欺骗手段欺骗摄像头的技术,是捕获人的特征信息来判断信息的来源是不是
来自真实活体上。随着生物识别技术不断的发展,在工作和生活中活体检测被重视程度也逐渐增加,这一领域的研究成果也取
得了很大的进步,更多的研究人员致力于活体检测。
现实的生活场景中,身份信息欺诈方式主要有3种:
(1)人脸照片:在生活中获取一个人的图片是很便捷的,在微信和微博等社交媒体便可获得。欺骗的手段就是利用照片以模
仿成人脸部的3D效果。
(2)人脸视频:面部视频能充分地模仿人脸,是最具欺诈性的,因为高清摄像头拍摄的视频会清晰完整记录人脸的面部信
息,最重要的是视频将包含面部动作、面部表情和眨眼等功能,能很好地模仿真实人脸。
(3)面部三维模型欺骗:通过对人脸的三维建模,可以模仿人脸的运动特征,头部的基本运动、讲话、眨眼睛等动作都可以
很好地模仿出来。因此,人脸照片和人脸视频是主要的欺骗手段。
国内外研究成果有很多,国内外学者也慢慢注意到活体检测这一领域,在这个领域的研究也是投入了大量的精力,国内和
国际期刊和国际会议上涉及的生物识别论文数量也在增加,并且提出了许多算法。如今,区分活体人脸检测的方法有:
(1)基于面部运动信息:对于静态人脸图片,人脸的面部照片是二维结构,真实人脸的面部是三维结构,本质上有着很大的
区别,运动信息也是有着天差地别。CHOUDHARY T
[4]
等人根据人脸的运动信息区别做了活体检测实验,首先,检测面部器
官(眼睛、鼻子、嘴等)作为检测的特征点,然后,基于运动的面部估算出这些特征点的三维坐标,真实人脸的结构是3D结构,
欺骗人脸是2D结构。
(2)基于纹理信息分析:研究人员根据真实人脸的虚拟成像形成了虚假人脸这一线索,对区分照片的纹理性差异这一方向展
开了研究。TAN T
[5]
区分活体人脸和虚假人脸的方法是基于傅里叶频谱。ANJOS A
[6]
、MAATTA J
[7]
等人对LBP对面部特征提
取的有效性进行了分析;MAATTA J通过应用LBP提取和使用SVM进行分类训练来提取面部特征。2012年MAATTA J等人提出
了改进算法,将LBP、Gabor wavelet和HOG 3种特征进行融合。这3种方式需要计算空间较大,提取特征较多,增加了计算难
度。
(3)基于多模态特征分析:通过人脸照片实现活体检测,欺骗手段种类较多且复杂,具有很大威胁性,隐患较大,如果结合
多模态特征,如:眼睛、鼻子、耳朵、语音、指纹或虹膜等,活体检测的准确率也会随之增加。PAN G
[8]
等人结合人的面部动
作眨眼和现实场景线索进行判别。为增加人脸活体判别的准确率,各种方法层出不穷,研究人员提出将虹膜和人脸相结合、人
脸结合语音等多种结合方式的检测方法,虽然这种方法可以提高识别精度,但对设备要求较高,成本较高。
本文提出的基于深度学习的活体检测方法对活体人脸照片进行预处理,人脸照片的特征提取应用的是卷积神经网络,并且
将这些特征进行训练,然后经过Sofmax分类器进行真假判别,并在公开的数据集上进行验证。该方法无需用户的主动配合,
训练过程简单,验证准确率高,降低了算法的难度。
1 基于深度学习的活体检测方案基于深度学习的活体检测方案
对于真实人脸和人脸成像,肉眼很难分辨出来,如图1所示。事实上活体人脸是一个很复杂的三维结构,每个角度的面部光
的反射都是不同的,因此会产生不同的反射和阴影;真实的人脸是三维结构,照片人脸是平面结构,因此面部特征有明显的不
同;因为每个像素点会有不同,经过卷积神经网络提取的特征会有很大的差异性,这一差异可以用来判别是真实人脸还是照片
人脸。因此本文提出基于深度学习的活体检测方法来解决人脸活体照片判别这一问题。
资源评论

- LearnBC2022-09-22rticle-3000107135

weixin_38575118
- 粉丝: 3
- 资源: 923
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


安全验证
文档复制为VIP权益,开通VIP直接复制
