基于高阶UKF的高斯和滤波器动态状态估计算法

所需积分/C币:5 2021-02-25 19:47:57 11KB PDF
6
收藏 收藏
举报

在这项工作中,我们考虑了非线性/非高斯系统中的状态估计问题。 本文基于高阶无味卡尔曼滤波器(HUKF),开发了一种新的高斯和估计算法。 针对HUKF,提出了一种sigma点选择方法,高阶无味变换(HUT)技术,该方法可以更精确地近似高斯分布。 我们介绍了高斯滤波器的系统公式,并开发了最优滤波器的高效和准确的数值积分。 然后,我们继续将HUKF的使用扩展到具有加性(可能是非高斯)噪声的离散时间非线性系统。 所得的滤波算法称为高斯和高阶无味卡尔曼滤波器(GS-HUKF),将预测和后验密度近似为有限数量的高斯密度加权和。 在理论分析和仿真中证实了所提出的高斯和HUKF在非线性非高斯滤波问题的计算精度和时间复杂度方面具有综合优势。

...展开详情
试读 1P 基于高阶UKF的高斯和滤波器动态状态估计算法
立即下载 低至0.43元/次 身份认证VIP会员低至7折
一个资源只可评论一次,评论内容不能少于5个字
您会向同学/朋友/同事推荐我们的CSDN下载吗?
谢谢参与!您的真实评价是我们改进的动力~
  • 至尊王者

关注 私信
上传资源赚钱or赚积分
最新推荐
基于高阶UKF的高斯和滤波器动态状态估计算法 5积分/C币 立即下载
1/1
基于高阶UKF的高斯和滤波器动态状态估计算法第1页

试读结束, 可继续阅读

5积分/C币 立即下载 >