下载  >  开发技术  >  Python  > Data Science from Scratch- First Principles with Python(O'Reilly,2015)

Data Science from Scratch- First Principles with Python(O'Reilly,2015) 评分:

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by imple
Data science from scratch Joel grus Beng. Cambridge. Farnham·Kn· Sebastopol, Tokyo OREILLY° Data Science from scratch by Joel grus Copyright o 2015 OReilly Media. All rights reserved Printed in the United states of america Published by O reilly Media, Inc, 1005 Gravenstein Highway North, Sebastopol, CA95472 OReilly books may be purchased for educational, business, or sales promotional use. Online editions are alsoavailableformosttitles(http://safaribooksonline.com).Formoreinformationcontactourcorporate institutionalsalesdepartment800-998-9938orcorporate@oreilly.com Editor: Marie Beaugureau Indexer: Ellen Troutman-Zaig Production Editor: Melanie Yarbrough Interior Designer: David Futato Copyeditor: Nan Reinhardt Cover Designer: Karen Montgomer Proofreader: Eileen cohen Illustrator: Rebecca Demarest April 2015 First edition Revision History for the First Edition 2015-04-10: First Release Seehttp://oreilly.com/catalog/errata.csp?isbn=9781491901427forreleasedetails The O reilly logo is a registered trademark of o reilly media, Inc. Data Science from Scratch, the cover image of a rock Ptarmigan, and related trade dress are trademarks of o reilly media, inc While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/ or rights 978-1-491-90142-7 ILSI Table of contents Preface XI 1. Introduction The ascend: of da What is data science? Motivating Hypothetical: DataSciencester Finding Key Connectors 111236 Data Scientists You May Know Salaries and Experience 8 Paid Accounts Topics of Interest Onward 2. A Crash Course in Python The Ba Getting pith g non P e zen or Py on Whitespace Formatting Arithmetic Functions 35556678899 Strings Exceptions Lists 20 Tuples 21 Dictionaries 21 ets 24 Control flo 25 Truthiness 25 The Not-So-Basics ng 27 List Comprehensions 27 Generators and iterators 28 Randomness 29 Regular Expressions 30 Object-Oriented Programming 30 Functional tools 31 enumerate 32 zip and argument Unpacking 33 args and kwargs 34 Welcome to dataSciencester 35 For Further Exploration 35 3. Visualizing Data matplotlib 37 Bar charts 39 Line charts 43 terplots 44 For Further Exploration 47 4. Linear Algebra 49 Vectors 49 Matrices 53 For Further Exploration 55 5. Statistics 57 Describing a Single Set of data 57 Central Tendencies 59 Dispersion 61 Correlation 62 Simpsons paradox Some other correlational caveats 66 Correlation and causation 67 For Further Exploration 68 6. Probabili ,,,69 Dependence and independence Conditional Probability 70 Bayes's Theorem 72 Random variables iv Table of Contents Continuous distributions The normal Distribution The Central Limit Theorem 78 For Further exploration 80 7. Hypothesis and Inference n81 Statistical Hypothesis Testing 81 Example: Flipping a Coin 81 Confidence intervals P-hacking 86 Example: Running an A/B Test 87 Bayesian Inference 88 For Further Exploration 92 8. Gradient descent The Idea behind gradient Descent 93 Estimating the gradient 94 Usi g the Gradient 97 Choosing the right Step size 97 Putting it all together 8 Stochastic gradient descent 99 For Further Exploration 100 Getting Data 103 stdin and stdout 103 Reading files 105 The Basics of Text files 105 Delimited files 106 Scraping the Web 108 HTML and the parsing Thereof 108 Example: O Reilly books about Data 110 Using APIs 114 jSON (and XML) 114 Using an Unauthenticated API 115 Finding apis 116 Example: Using the Twitter APIs 117 Getting Credentials 117 For Further Exploration 120 10. Working with Data. 121 Exploring Your Data 121 Exploring one-Dimensional Data 121 Table of contents Two Dimensions 123 Many dimensions 125 Cleaning and Munging 127 Manipulating data 129 Rescaling 132 Dimensionality Reduction 134 For Further Exploration 139 11. Machine Learning 141 Modeling 141 What Is Machine Learning 142 Overfitting and Underfittin g 142 Correctness 145 The Bias-Variance Trade-off 147 Feature Extraction and selection 148 For Further Exploration 150 12. k-Nearest Neighbors. 151 The model 151 Example: Favorite Languages 153 The Curse of Dimensionality 156 For Further Exploration 163 13. Naive bayes. 165 A Really Dumb Spam Filter 165 A More Sophisticated Spam Filter 166 Implementation 168 Testing Our Model 169 For Further Exploration 172 14. Simple linear regression ,173 The model 173 Using gradient Descent 176 Maximum Likelihood estimation 177 For Further Exploration 177 15. Multiple Regression.…,,…, The model 179 Further Assumptions of the Least Squares Model 180 Fitting the model 181 Interpreting the model 182 Goodness of Fit 183 Table of contents Digression: The Bootstrap 183 Standard Errors of Regression Coefficients 184 Regularization 186 For Further Exploration 188 16. Logistic Regression The Problem 189 The Logistic Function 192 Applying the Model 194 Goodness of Fit 195 Support Vector Machines 196 For Further Investigation 200 17. Decision trees 201 What is a decision tree? 201 Entropy 20 The entropy of a partition 205 Creating a Decision Tree 206 Putting It All Together 208 Random forests 211 For Further Exploration 212 18. Neural Networks.44....4..213 Perceptrons 213 Feed-Forward Neural Networks 215 Ba backpropagation 218 Example: Defeating a CAPTCHA 219 For Further Exploration 224 19.〔 lustering 225 The idea 225 The model 226 Example: Meetups 227 Choosing k 230 Example: Clustering Colors 231 Bottom-up Hierarchical Clustering 233 For Further Exploration 238 20. Natural Language Processing ,239 Word Clouds 239 n-gram Models 241 Grammars 244 Table of contents|ⅶi An Aside: Gibbs Sampling 246 Topic Modeling 247 For Further Exploration 253 21. Network analysis 255 Betweenness Centrality 255 Eigenvector Centrality 260 Matrix Multiplication 260 Centrali 262 Directed Graphs and PageRank 264 For Further Exploration 266 22. Recommender systems. 267 Manual curation 268 Recommending What's Popular 268 User-Based Collaborative Filtering 269 Item-Based Collaborative Filtering 272 For Further Exploration 274 23. Databases and SQL............................ 275 CREATE TABLE and INsert 275 UPDATE 277 DELETE 278 SELECT 278 GROUP BY 280 ORDER BY 282 JOIN 283 Subqueries 285 Indexes 285 Query optimization 286 NOSQL 287 For Further exploration 287 24. Map Reduce 289 Example: Word Count 289 Why map reduce? 291 Map Reduce More Generally 292 Example: Analyzing Status Updates 293 Example: Matrix Multiplication 294 An aside: Combiners 296 For Further Exploration 296 I Table of Contents

...展开详情
2017-01-13 上传 大小:5.57MB
举报 收藏 (1)
分享

评论 下载该资源后可以进行评论 共2条

jinyu345 中文版我也下载了,英语版作为补充,很好中。
2018-08-11
回复
exceptionist very good!
2017-09-16
回复
Data-Science-from-Scratch-First-Principles-with-Python.pdf.pdf

Data-Science-from-Scratch-First-Principles-with-Python.pdf

立即下载
Data Science from Scratch First Principles with Python

数据科学入门,第二版, 介绍数据科学基本知识的重量级读本,Google数据科学家作品。   数据科学是一个蓬勃发展、前途无限的行业,有人将数据科学家称为“21世纪头号性感职业”。本书从零开始讲解数据科学工作,教授数据科学工作所必需的黑客技能,并带领读者熟悉数据科学的核心知识——数学和统计学。   作者选择了功能强大、简单易学的Python语言环境,亲手搭建工具和实现算法,并精心挑选了注释良好、简洁易读的实现范例。书中涵盖的所有代码和数据都可以在GitHub上下载。   通过阅读本书,你可以:   学到一堂Python速成课;   学习线性代数、统计和概率论的基本方法,了解它们是怎样应用在数据

立即下载
Data Science from Scratch First Principles with Python 无水印pdf

Data Science from Scratch First Principles with Python 英文无水印pdf pdf所有页面使用FoxitReader和PDF-XChangeViewer测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 本资源转载自网络,如有侵权,请联系上传者或csdn删除

立即下载
数据科学入门(Data Science from Scratch 中文版).pdf

数据科学入门_P286_2016.03.pdf [OReilly].Data.Science.from.Scratch.First.Principles.with.Python.2015 中文版

立即下载
Data Science from Scratch

Data Science from Scratch First Principle with Python

立即下载
Data science from scratch

入门级数据科学(data science)教程,适合零基础入门学习数据科学的同学。

立即下载
Data Science from Scratch with Python

Are you thinking of learning data science from scratch using Python? (For Beginners) If you are looking for a complete step-by-step guide to data science using Python from scratch, this book is for you. After his great success with his first book “Data Analysis from Scratch with Python”, Peters Mor

立即下载
Data Science from Scratch.pdf

本书的作者就t是python的库pandas的开发和维护者,想必你以及直到这个数的分量和含量了。本书的作者就t是python的库pandas的开发和维护者,想必你以及直到这个数的分量和含量了。本书的作者就t是python的库pandas的开发和维护者,想必你以及直到这个数的分量和含量了。

立即下载
Data Science from Scratch, 2nd Edition

Data Science from Scratch, 2nd Edition

立即下载
数据科学入门:Data Science from Scratch

数据科学入门:Data Science from Scratch中英文高清打包合集

立即下载
Data Science from Scratch 原版PDF by Grus

Data scientist has been called “the sexiest job of the 21st century,” presumably by someone who has never visited a fire station. Nonetheless, data science is a hot and growing field, and it doesn’t take a great deal of sleuthing to find analysts breathlessly prognosticating that over the next 10 ye

立即下载
Data Science from Scratch First Principles with P

Data scientist has been called “the sexiest job of the 21st century,” presumably by someone who has never visited a fire station. Nonetheless, data science is a hot and growing field, and it doesn’t take a great deal of sleuthing to find analysts breathlessly prognosticating that over the next 10 ye

立即下载
Data Science from Scratch 中文+英文+源代码

说是数据科学指路到是差不多。告诉你有哪些方面的知识需要去学习的。25章每章都值得单独去借上一两本书去学习,都值得花上一两个月用上N多个案例来实践,这样之后,我觉得才是真的入门了。 书中的代码又是一段一段的,估计只有作者才会知道这个功能是怎么来的,有什么用。后面...

立即下载
Data Science from Scratch - First Principles with Python.2015

Joel Grus ■■ Get a crash course in Python ■■ Learn the basics of linear algebra, statistics, and probability— and understand how and when they're used in data science ■■ Collect, explore, clean, munge, and manipulate data ■■ Dive into the fundamentals of machine learning ■■ Implement models such as

立即下载
英文原版-Data Science from Scratch First Principles with Python 1st Edition

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by imple

立即下载
Data Science from Scratch- First Principles with Python(O'Reilly,2015)

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by imple

立即下载
Data Science

A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges. The goal of data science is to improve decision making through the analysis of data. Today data science determines t

立即下载
data science

The MIT Press Essential Knowledge series offers accessible, concise, beautifully produced pocket-size books on topics of current interest. Written by leading thinkers, the books in this series deliver expert overviews of subjects that range from the cultural and the historical to the scientific and

立即下载
html+css+js制作的一个动态的新年贺卡

该代码是http://blog.csdn.net/qq_29656961/article/details/78155792博客里面的代码,代码里面有要用到的图片资源和音乐资源。

立即下载
qBittorrent插件集合(22个)

btetree.py cpasbien.py divxtotal.py ilcorsaronero.py kickass.py leetx.py limetorrents.py linuxtracker.py nyaa.py nyaapantsu.py nyaasi.py pantsu.py psychocydd.py rarbg.py rutor.py skytorrents.py sukebei.py sumotorrent.py tntvillage.py torrent9.py torrentfunk.py zooqle.py

立即下载