<div align="center"><img src="./images/home1.png" /></div>
BestYOLO是一个以科研和竞赛为导向的最好的YOLO实践框架!
目前BestYOLO是一个完全基于[YOLOv5 v7.0](https://github.com/ultralytics/yolov5/tree/v7.0) 进行改进的开源库,该库将始终秉持以落地应用为导向,以轻便化使用为宗旨,简化各种模块的改进。目前已经集成了基于[torchvision.models](https://pytorch.org/vision/stable/index.html) 模型为Backbone的YOLOv5目标检测算法,同时也将逐渐开源更多YOLOv5应用程序。
# 🌟改进
- [Backbone-ResNet18](https://github.com/WangRongsheng/BestYOLO/blob/main/models/backbone/resnet18.yaml) 对齐 [resnet18](https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet18.html#torchvision.models.resnet18)
- [Backbone-RegNet_y_400mf](https://github.com/WangRongsheng/BestYOLO/blob/main/models/backbone/RegNety400.yaml) 对齐 [regnet_y_400mf](https://pytorch.org/vision/stable/models/generated/torchvision.models.regnet_y_400mf.html#torchvision.models.regnet_y_400mf)
- [Backbone-MobileNetV3 small](https://github.com/WangRongsheng/BestYOLO/blob/main/models/backbone/MobileNetV3s.yaml) 对齐 [mobilenet_v3_small](https://pytorch.org/vision/stable/models/generated/torchvision.models.mobilenet_v3_small.html#torchvision.models.mobilenet_v3_small)
- [Backbone-EfficientNet_B0](https://github.com/WangRongsheng/BestYOLO/blob/main/models/backbone/efficientnet_b0.yaml) 对齐 [efficientnet_b0](https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b0.html#torchvision.models.efficientnet_b0)
- [Backbone-ResNet34](https://github.com/WangRongsheng/BestYOLO/blob/main/models/backbone/resnet34.yaml) 对齐 [resnet34](https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet34.html#torchvision.models.resnet34)
- [Backbone-ResNet50](https://github.com/WangRongsheng/BestYOLO/blob/main/models/backbone/resnet50.yaml) 对齐 [resnet50](https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet50.html#torchvision.models.resnet50)
- [Backbone-EfficientNetV2_s](https://github.com/WangRongsheng/BestYOLO/blob/main/models/backbone/efficientnet_v2_s.yaml) 对齐 [efficientnet_v2_s](https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_v2_s.html#torchvision.models.efficientnet_v2_s)
- [Backbone-EfficientNet_B1](https://github.com/WangRongsheng/BestYOLO/blob/main/models/backbone/efficientnet_b1.yaml) 对齐 [efficientnet_b1](https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b1.html#torchvision.models.efficientnet_b1)
- [Backbone-MobileNetV2](https://github.com/WangRongsheng/BestYOLO/blob/main/models/backbone/mobilenet_v2.yaml) 对齐 [mobilenet_v2](https://pytorch.org/vision/stable/models/generated/torchvision.models.mobilenet_v2.html#torchvision.models.mobilenet_v2)
- [Backbone-wide_resnet50_2](https://github.com/WangRongsheng/BestYOLO/blob/main/models/backbone/wide_resnet50_2.yaml) 对齐 [wide_resnet50_2](https://pytorch.org/vision/stable/models/generated/torchvision.models.wide_resnet50_2.html#torchvision.models.wide_resnet50_2)
- [Backbone-VGG11_BN](https://github.com/WangRongsheng/BestYOLO/blob/main/models/backbone/vgg11_bn.yaml) 对齐 [vgg11_bn](https://pytorch.org/vision/stable/models/generated/torchvision.models.vgg11_bn.html#torchvision.models.vgg11_bn)
- [Backbone-Convnext Tiny](https://github.com/WangRongsheng/BestYOLO/blob/main/models/backbone/convnext_tiny.yaml) 对齐 [convnext_tiny](https://pytorch.org/vision/stable/models/generated/torchvision.models.convnext_tiny.html#torchvision.models.convnext_tiny)
> 所有Backbone都支持开启预训练权重,只需添加`pretrained=True`到每个[common.py](https://github.com/WangRongsheng/BestYOLO/blob/main/models/common.py#L870) 的模型中。`torchvision.models`中的预训练权重都是基于ImageNet-1K数据集训练的!
|models|layers|parameters|model size(MB)|
|:-|:-|:-|:-|
|yolov5n|214|1766623|3.9|
|MobileNetV3s|313|2137311|4.7|
|efficientnet_b0|443|6241531|13.0|
|RegNety400|450|5000191|10.5|
|ResNet18|177|12352447|25.1|
|ResNet34|223|22460607|45.3|
|ResNet50|258|27560895|55.7|
|EfficientNetV2_s|820|22419151|45.8|
|efficientnet_b1|539|6595615|13.8|
|mobilenet_v2|320|4455295|9.4|
|wide_resnet50_2|258|70887103|142.3|
|vgg11_bn|140|10442879|21.9|
|convnext_tiny|308|29310175|59.0|
> `.yaml`配置文件中的`depth_multiple`和`width_multiple`可以同时设置为1试试,说不定会有不错的效果。
> SPP是空间金字塔池化,作用是一个实现一个自适应尺寸的输出。(传统的池化层如最大池化、平均池化的输出大小是和输入大小挂钩的,但是我们最后做全连接层实现分类的时候需要指定全连接的输入,所以我们需要一种方法让神经网络在某层得到一个固定维度的输出,而且这种方法最好不是resize(resize会失真),由此SPP应运而生,其最早是何凯明提出,应用于RCNN模型)。当今的SPP在faster-rcnn上已经发展为今天的Multi-Scale-ROI-Align,而在Yolo上发展为SPPF。
- [yolov5n(SPPF)](https://github.com/WangRongsheng/BestYOLO/blob/main/models/yolov5n.yaml)
- [yolov5n-SPP](https://github.com/WangRongsheng/BestYOLO/blob/main/models/SPP/yolov5n-SPP.yaml)
- [yolov5n-SimSPPF](https://github.com/WangRongsheng/BestYOLO/blob/main/models/SPP/yolov5n-SimSPPF.yaml)
- [yolov5n-ASPP](https://github.com/WangRongsheng/BestYOLO/blob/main/models/SPP/yolov5n-ASPP.yaml)
- [yolov5n-RFB](https://github.com/WangRongsheng/BestYOLO/blob/main/models/SPP/yolov5n-RFB.yaml)
- [yolov5n-SPPCSPC](https://github.com/WangRongsheng/BestYOLO/blob/main/models/SPP/yolov5n-SPPCSPC.yaml)
- [yolov5n-SPPCSPC_group](https://github.com/WangRongsheng/BestYOLO/blob/main/models/SPP/yolov5n-SPPCSPC_group.yaml)
- [yolov5n-SimCSPSPPF](https://github.com/WangRongsheng/BestYOLO/blob/main/models/SPP/yolov5n-SimCSPSPPF.yaml)
|models|layers|parameters|
|:-|:-|:-|
|yolov5n(SPPF)|214|1766623|
|yolov5n-SPP|217|1766623|
|yolov5n-SimSPPF|216|1766623|
|yolov5n-ASPP|214|3831775|
|yolov5n-RFB|251|1932287|
|yolov5n-SPPCSPC|232|3375071|
|yolov5n-SPPCSPC_group|232|2047967|
|yolov5n-SimCSPSPPF|229|3375071|
- [yolov5n](https://github.com/WangRongsheng/BestYOLO/blob/main/models/yolov5n.yaml)
- [yolov5n-FPN-AC](https://github.com/WangRongsheng/BestYOLO/blob/main/models/Attention/Self/yolov5n-FPN-AC.yaml)
- [yolov5n-PAN-AC](https://github.com/WangRongsheng/BestYOLO/blob/main/models/Attention/Self/yolov5n-PAN-AC.yaml)
- [yolov5n-FPN+PAN-AC](https://github.com/WangRongsheng/BestYOLO/blob/main/models/Attention/Self/yolov5n-FPN+PAN-AC.yaml)
- [yolov5n-FPN-AS](https://github.com/WangRongsheng/BestYOLO/blob/main/models/Attention/Self/yolov5n-FPN-AS.yaml)
- [yolov5n-PAN-AS](https://github.com/WangRongsheng/BestYOLO/blob/main/models/Attention/Self/yolov5n-PAN-AS.yaml)
- [yolov5n-FPN+PAN-AS](https://github.com/WangRongsheng/BestYOLO/blob/main/models/Attention/Self/yolov5n-FPN+PAN-AS.yaml)
|models|layers|parameters|
|:-|:-|:-|
|yolov5n|214|1766623|
|yolov5n-FPN-AC|188|1858399|
|yolov5n-PAN-AC|186|1642591|
|yolov5n-FPN+PAN-AC|160|1734367|
|yolov5n-FPN-AS|204|2106847|
|yolov5n-PAN-AS|194|1891039|
|yolov5n-FPN+PAN-AS|184|2231263|
- [Optimal Transport Assignment](https://github.com/WangRongsheng/BestYOLO/blob/main/train.py#L476)
- [辅助训练Optimal Transport Assignment](https://github.com/WangRongsheng/BestYOLO/blob/main/train_AuxOTA.py#L255)
- [Soft-NMS](https://github.com/WangRongsheng/BestYOLO/blob/main/utils/general-softnms.py)
> 训练不要使用`Soft-NMS`,耗时太久,请在`val`阶段开启,适用于小目标重叠数据。
- [Decoupled-head](https://blog.csdn.net/weixin_43694096/article/details/127427578)
- [DCNv2](https://github.com/WangRongsheng/BestYOLO/blob/main/models/backbone/yolov5n-DCN.yaml)
- [WBF](https://github.com/WangRongsheng/BestYOLO/blob/main/wbf.py)
- [DCNv3](https://www.bilibili.com/video/BV1LY411z7iE)
-
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
BestYOLO:以科研和竞赛为导向的最好的YOLO实践框架! (441个子文件)
group1-shard1of2.bin 4MB
group1-shard2of2.bin 3.19MB
yolov5.cpp 10KB
dcnv3_cpu.cpp 2KB
vision.cpp 699B
main.cpp 639B
main.css 429B
dcnv3_cuda.cu 8KB
dcnv3_im2col_cuda.cuh 49KB
Dockerfile 821B
DCNv3-1.0-py3.8-linux-x86_64.egg 2.9MB
app.exe 8.07MB
logging.h 17KB
common.h 4KB
dcnv3.h 2KB
dcnv3_cuda.h 2KB
dcnv3_cpu.h 2KB
yolov5.h 1KB
index.html 2KB
app.ico 4KB
tutorial.ipynb 100KB
tutorial.ipynb 42KB
check_torchvision_model.ipynb 1KB
031.jpg 2.26MB
bus.jpg 476KB
bus.jpg 476KB
bus.jpg 476KB
002.jpg 458KB
001.jpg 423KB
0913.jpg 275KB
0904.jpg 273KB
003.jpg 270KB
0923.jpg 237KB
0916.jpg 204KB
022.jpg 200KB
0911.jpg 186KB
background.jpg 181KB
1.jpg 178KB
zidane.jpg 165KB
zidane.jpg 165KB
0917.jpg 151KB
0921.jpg 136KB
007.jpg 120KB
0918.jpg 46KB
0905.jpg 36KB
0912.jpg 30KB
0922.jpg 17KB
0914.jpg 17KB
0910.jpg 16KB
0909.jpg 14KB
0908.jpg 14KB
0915.jpg 9KB
0920.jpg 9KB
0903.jpg 8KB
0919.jpg 8KB
yolov5_rt_tfjs.js 9KB
model.json 213KB
optimizer_config.json 3KB
setting.json 79B
ip.json 53B
fold.json 45B
LICENSE 34KB
README.md 15KB
README.md 11KB
README.md 11KB
README.md 11KB
README.md 10KB
README.md 2KB
README.md 2KB
wbf.md 626B
README.md 434B
README.md 312B
vision.o 14.75MB
dcnv3_cpu.o 1.63MB
dcnv3_cuda.o 1.4MB
PKG-INFO 172B
multi-label.png 3.42MB
背景.png 2.39MB
zidane.png 1.92MB
SingleWin.png 986KB
gui.png 588KB
Running.png 587KB
tfjs1.png 412KB
GUI_new.png 366KB
fog_augment.png 197KB
opt.png 154KB
home1.png 112KB
home.png 105KB
图片1.png 101KB
图片1.png 101KB
maketools.png 21KB
模.png 9KB
运行.png 9KB
赞停.png 6KB
赞停.png 6KB
开始.png 5KB
打开.png 5KB
摄像头开.png 4KB
模型中心.png 4KB
conan.png 4KB
共 441 条
- 1
- 2
- 3
- 4
- 5
资源评论
落难Coder
- 粉丝: 9422
- 资源: 22
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功