MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf

所需积分/C币:28 2017-09-27 15:28:36 3.66MB PDF

MATLAB Deep Learning With Machine Learning, Neural Networks and Artificial Intelligence 英文无水印pdf pdf所有页面使用FoxitReader和PDF-XChangeViewer测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 本资源转载自网络,如有侵权,请联系上传者或csdn删除
MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence Phil Kim Seoul, Soul-t'ukpyolsi, Korea(Republic of) ISBN-13(pbk):978-1-48422844-9 ISBN-13( electronic):978-1-4842-2845-6 DOI10.1007/978-1-4842-2845-6 Library of Congress Control Number: 2017944429 Copyright o 2017 by phil kim This work is subject to copyright All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse ofillustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the tradema The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein Cover image designed by Freepik Managing Director: Welmoed Spahr Editorial Director: Todd green Acquisitions Editor: Steve anglin Development editor: Matthew Moodie Technical Reviewer: Jonah Lissner Coordinating Editor: Mark Powers Copy Editor: Kezia Endsley Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax(201)348-4505, e-mail orders-ny@springer-sbm.comorvisitwww.springeronline.comApressMedia,LlcisaCalifornia LLC and the sole member (owner ) is Springer Science Business Media Finance Inc(SSBM Finance Inc) SSBM Finance Inc is a Delaware corporation Forinformationontranslationspleasee-mailrights@apress.comorvisithttp://www.apress.com/ rights-permissions Apress titles may be purchased in bulk for academic, corporate, or promotional use e Book versions and licenses are also available for most titles for more information reference our print and ebook Bulksaleswebpageathttp://www.apress.com/bulk-sales Any source code or other supplementary material referenced by the author in this book is available to readersonGithubviathebooksproductpagelocatedatwww.apress.com/9781484228449.Formore detailedinformationpleasevisithttp://www.apress.com/source-code Printed on acid-free paper Contents at a glance About the author ■■■■■■■■■■■■■■■口■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ About the technical reviewer ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ Acknowledgments ummaattmmaammaatnmmanmmaammanmmaa Xiii Introduction Chapter 1: Machine Learning ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ Chapter 2: Neural Network ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 19 Chapter 3: Training of Multi-Layer Neural Network 53 Chapter 4: Neural Network and classitication a ■■■■■■■■■ 81 Chapter 5: Deep Learning mmmmmmm REn 103 Chapter 6: Convolutional Neural Network mma 121 ndex ■■■■■■■■ ■■■■■■■■ ■■■■■■■■ ■■■■■■■■ ■■■■■■■■ ■■■■■■■■ ■■■■■■■■ 。149 Contents About the author ■■■■■■■■■■■■■■■口■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ About the technical reviewer ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ Acknowledgments ummaattmmaammaatnmmanmmaammanmmaa Xiii Introduction Chapter 1: Machine Learning ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ What Is Machine Learning 2 Challenges with Machine Learning. 0 verfitting…6 Confronting overfitting 10 Types of Machine Learning . 12 Classification and regression .e.......... 14 Summary… 17 Chapter 2: Neural Network ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 19 Nodes of a neural network 20 Layers of Neural Network. 22 Supervised Learning of a Neural Network…… .27 Training of a Single-Layer Neural Network: Delta Rule 29 Generalized delta rule 32 CONTENtS SGD, Batch, and Stochastic gradient descent 34 Batch Mini batch, wwwww 36 Example: Delta rule 37 mplementation of the SGD Meth0d…..,,,……38 Implementation of the Batch Method Comparison of the SGD and the batch.......mm.m.n 43 Limitations of Single- Layer Neural Networks.….,……45 Summary…… 灬50 Chapter 3: Training of Multi-Layer Neural Network. n 53 Back-Propagation algorithm 54 Example: Back-Propagation n60 XOR Problem Momentum 65 Cost Function and learning rule. Example: Cross Entropy Function.…..,,…,……,………73 Cross entropy Function 74 Comparison of cost Functions 76 Summary Chapter 4: Neural Network and classification menma. 81 Binary classification 81 Multiclass classification 86 EXample: Multiclass classification 93 Summary n102 CONTENTS Chapter 5: Deep Learning ag103 Improvement of the Deep Neural Network…..…105 Vanishing gradient..… Overfitting …107 Computational load Example: Relu and dropout……,, 109 RElu function 110 Dropout 114 Summary… 120 Chapter 6: Convolutional Neural Network mmmmmmmmmmmmmmm, 121 Architecture of convNet 121 Convolution Layer 124 Pooling layer 130 Example: MNIST 131 Summary 147 Index ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■口■■■■■■■■■■■■■■■■■■■■■■ 149 VIl About the author Phil Kim, Phd is an experienced matlab programmer and user. He also works with algorithms of large datasets drawn from AI, and Machine Learning. He has worked at the Korea aerospace research institute as a senior researcher There, his main task was to develop autonomous flight algorithms and onboard software for unmanned aerial vehicles. he developed an onscreen keyboard program named"Clickey"during his period in the PhD program, which served as a bridge to bring him to his current assignment as a Senior Research Officer at the National rehabilitation research Institute of Korea About the technical Reviewer Jonah Lissner is a research scientist advancing PhD and DSc programs, scholarships, applied projects, and academic journal publications in theoretical physics, power engineering, complex systems, metamaterials, geophysics, and computation theory. He has strong cognitive ability in empiricism and scientific reason for the purpose of hypothesis building, theory learning, and mathematical and axiomatic modeling and testing for abstract problem solving His dissertations, research publications and projects, CV, journals, blog, novels, Indsystemarelistedathttp://lissnErresearch.weebly.com Acknowledgments Although i assume that the acknowledgements of most books are not relevant to readers, I would like to offer some words of appreciation, as the following people are very special to me. First, I am deeply grateful to those I studied DeeplearningwithattheModulabs(www.modulabs.co.kr.iowethemfor teaching me most of what I know about Deep Learning. In addition, I offer my heartfelt thanks to director s Kim of modulabs who allowed me to work in such a wonderful place from spring to summer. i was able to finish the most of this book at modulars I also thank president Jeon from Bogonet, Dr H. You, Dr Y.S. Kang, and Mr. J.H. Lee from KARI, director S Kim from Modulabs and Mr w. Lee and Mr S Hwang from J. MARPLE. They devoted their time and efforts to reading and revising the draft of this book. Although they gave me a hard time throughout the revision process, I finished it without regret Lastly, my deepest thanks and love to my wife, who is the best woman I have ever met, and children, who never get bored of me and share precious memories with me XIlI

...展开详情
试读 127P MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf

评论 下载该资源后可以进行评论 1

mutton 就是分太高了,还可以!
2018-01-07
回复
img

关注 私信 TA的资源

上传资源赚积分,得勋章
    最新推荐
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf 28积分/C币 立即下载
    1/127
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf第1页
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf第2页
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf第3页
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf第4页
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf第5页
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf第6页
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf第7页
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf第8页
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf第9页
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf第10页
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf第11页
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf第12页
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf第13页
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf第14页
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf第15页
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf第16页
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf第17页
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf第18页
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf第19页
    MATLAB Deep Learning With Machine Learning, Neural Networks and 无水印pdf第20页

    试读已结束,剩余107页未读...

    28积分/C币 立即下载 >