Python数据科学指南
作者:[印度] 萨伯拉曼尼安
出版社:人民邮电出版社
ISBN:9787115435101
VIP会员免费
(仅需0.8元/天)
¥ 50.56
温馨提示: 价值40000元的1000本电子书,VIP会员随意看哦!
电子书推荐
-
-
Python数据科学手册(Python Data Science Handbook) 完整英文pdf+源代码 评分:
Preface What Is Data Science? Who Is This Book For? Why Python? Python 2 Versus Python 3 Outline of This Book Using Code Examples Installation Considerations Conventions Used in This Book O’Reilly Safari How to Contact Us 1. IPython: Beyond Normal Python Shell or Notebook? Launching the IPython Shell Launching the Jupyter Notebook Help and Documentation in IPython Accessing Documentation with ? Accessing Source Code with ?? Exploring Modules with Tab Completion Tab completion of object contents Tab completion when importing Beyond tab completion: Wildcard matching Keyboard Shortcuts in the IPython Shell Navigation Shortcuts Text Entry Shortcuts Command History Shortcuts Miscellaneous Shortcuts IPython Magic Commands Pasting Code Blocks: %paste and %cpaste Running External Code: %run Timing Code Execution: %timeit Help on Magic Functions: ?, %magic, and %lsmagic Input and Output History IPython’s In and Out Objects Underscore Shortcuts and Previous Outputs Suppressing Output Related Magic Commands IPython and Shell Commands Quick Introduction to the Shell Shell Commands in IPython Passing Values to and from the Shell Shell-Related Magic Commands Errors and Debugging Controlling Exceptions: %xmode Debugging: When Reading Tracebacks Is Not Enough Partial list of debugging commands Profiling and Timing Code Timing Code Snippets: %timeit and %time Profiling Full Scripts: %prun Line-by-Line Profiling with %lprun Profiling Memory Use: %memit and %mprun More IPython Resources Web Resources Books 2. Introduction to NumPy Understanding Data Types in Python A Python Integer Is More Than Just an Integer A Python List Is More Than Just a List Fixed-Type Arrays in Python Creating Arrays from Python Lists Creating Arrays from Scratch NumPy Standard Data Types The Basics of NumPy Arrays NumPy Array Attributes Array Indexing: Accessing Single Elements Array Slicing: Accessing Subarrays One-dimensional subarrays Multidimensional subarrays Accessing array rows and columns Subarrays as no-copy views Creating copies of arrays Reshaping of Arrays Array Concatenation and Splitting Concatenation of arrays Splitting of arrays Computation on NumPy Arrays: Universal Functions The Slowness of Loops Introducing UFuncs Exploring NumPy’s UFuncs Array arithmetic Absolute value Trigonometric functions Exponents and logarithms Specialized ufuncs Advanced Ufunc Features Specifying output Aggregates Outer products Ufuncs: Learning More Aggregations: Min, Max, and Everything in Between Summing the Values in an Array Minimum and Maximum Multidimensional aggregates Other aggregation functions Example: What Is the Average Height of US Presidents? Computation on Arrays: Broadcasting Introducing Broadcasting Rules of Broadcasting Broadcasting example 1 Broadcasting example 2 Broadcasting example 3 Broadcasting in Practice Centering an array Plotting a two-dimensional function Comparisons, Masks, and Boolean Logic Example: Counting Rainy Days Digging into the data Comparison Operators as ufuncs Working with Boolean Arrays Counting entries Boolean operators Boolean Arrays as Masks Fancy Indexing Exploring Fancy Indexing Combined Indexing Example: Selecting Random Points Modifying Values with Fancy Indexing Example: Binning Data Sorting Arrays Fast Sorting in NumPy: np.sort and np.argsort Sorting along rows or columns Partial Sorts: Partitioning Example: k-Nearest Neighbors Structured Data: NumPy’s Structured Arrays Creating Structured Arrays More Advanced Compound Types RecordArrays: Structured Arrays with a Twist On to Pandas 3. Data Manipulation with Pandas Installing and Using Pandas Introducing Pandas Objects The Pandas Series Object Series as generalized NumPy array Series as specialized dictionary Constructing Series objects The Pandas DataFrame Object DataFrame as a generalized NumPy array DataFrame as specialized dictionary Constructing DataFrame objects From a single Series object From a list of dicts From a dictionary of Series objects From a two-dimensional NumPy array From a NumPy structured array The Pandas Index Object Index as immutable array Index as ordered set Data Indexing and Selection Data Selection in Series Series as dictionary Series as one-dimensional array Indexers: loc, iloc, and ix Data Selection in DataFrame DataFrame as a dictionary DataFrame as two-dimensional array Additional indexing conventions Operating on Data in Pandas Ufuncs: Index Preservation UFuncs: Index Alignment Index alignment in Series Index alignment in DataFrame Ufuncs: Operations Between DataFrame and Series Handling Missing Data Trade-Offs in Missing Data Conventions Missing Data in Pandas None: Pythonic missing data NaN: Missing numerical data NaN and None in Pandas Operating on Null Values Detecting null values Dropping null values Filling null values Hierarchical Indexing A Multiply Indexed Series The bad way The better way: Pandas MultiIndex MultiIndex as extra dimension Methods of MultiIndex Creation Explicit MultiIndex constructors MultiIndex level names MultiIndex for columns Indexing and Slicing a MultiIndex Multiply indexed Series Multiply indexed DataFrames Rearranging Multi-Indices Sorted and unsorted indices Stacking and unstacking indices Index setting and resetting Data Aggregations on Multi-Indices Combining Datasets: Concat and Append Recall: Concatenation of NumPy Arrays Simple Concatenation with pd.concat Duplicate indices Catching the repeats as an error Ignoring the index Adding MultiIndex keys Concatenation with joins The append() method Combining Datasets: Merge and Join Relational Algebra Categories of Joins One-to-one joins Many-to-one joins Many-to-many joins Specification of the Merge Key The on keyword The left_on and right_on keywords The left_index and right_index keywords Specifying Set Arithmetic for Joins Overlapping Column Names: The suffixes Keyword Example: US States Data Aggregation and Grouping Planets Data Simple Aggregation in Pandas GroupBy: Split, Apply, Combine Split, apply, combine The GroupBy object Column indexing Iteration over groups Dispatch methods Aggregate, filter, transform, apply Aggregation Filtering Transformation The apply() method Specifying the split key A list, array, series, or index providing the grouping keys A dictionary or series mapping index to group Any Python function A list of valid keys Grouping example Pivot Tables Motivating Pivot Tables Pivot Tables by Hand Pivot Table Syntax Multilevel pivot tables Additional pivot table options Example: Birthrate Data Further data exploration Vectorized String Operations Introducing Pandas String Operations Tables of Pandas String Methods Methods similar to Python string methods Methods using regular expressions Miscellaneous methods Vectorized item access and slicing Indicator variables Example: Recipe Database A simple recipe recommender Going further with recipes Working with Time Series Dates and Times in Python Native Python dates and times: datetime and dateutil Typed arrays of times: NumPy’s datetime64 Dates and times in Pandas: Best of both worlds Pandas Time Series: Indexing by Time Pandas Time Series Data Structures Regular sequences: pd.date_range() Frequencies and Offsets Resampling, Shifting, and Windowing Resampling and converting frequencies Time-shifts Rolling windows Where to Learn More Example: Visualizing Seattle Bicycle Counts Visualizing the data Digging into the data High-Performance Pandas: eval() and query() Motivating query() and eval(): Compound Expressions pandas.eval() for Efficient Operations Operations supported by pd.eval() Arithmetic operators Comparison operators Bitwise operators Object attributes and indices Other operations DataFrame.eval() for Column-Wise Operations Assignment in DataFrame.eval() Local variables in DataFrame.eval() DataFrame.query() Method Performance: When to Use These Functions Further Resources 4. Visualization with Matplotlib General Matplotlib Tips Importing matplotlib Setting Styles show() or No show()? How to Display Your Plots Plotting from a script Plotting from an IPython shell Plotting from an IPython notebook Saving Figures to File Two Interfaces for the Price of One MATLAB-style interface Object-oriented interface Simple Line Plots Adjusting the Plot: Line Colors and Styles Adjusting the Plot: Axes Limits Labeling Plots Simple Scatter Plots Scatter Plots with plt.plot Scatter Plots with plt.scatter plot Versus scatter: A Note on Efficiency Visualizing Errors Basic Errorbars Continuous Errors Density and Contour Plots Visualizing a Three-Dimensional Function Histograms, Binnings, and Density Two-Dimensional Histograms and Binnings plt.hist2d: Two-dimensional histogram plt.hexbin: Hexagonal binnings Kernel density estimation Customizing Plot Legends Choosing Elements for the Legend Legend for Size of Points Multiple Legends Customizing Colorbars Customizing Colorbars Choosing the colormap Color limits and extensions Discrete colorbars Example: Handwritten Digits Multiple Subplots plt.axes: Subplots by Hand plt.subplot: Simple Grids of Subplots plt.subplots: The Whole Grid in One Go plt.GridSpec: More Complicated Arrangements Text and Annotation Example: Effect of Holidays on US Births Transforms and Text Position Arrows and Annotation Customizing Ticks Major and Minor Ticks Hiding Ticks or Labels Reducing or Increasing the Number of Ticks Fancy Tick Formats Summary of Formatters and Locators Customizing Matplotlib: Configurations and Stylesheets Plot Customization by Hand Changing the Defaults: rcParams Stylesheets Default style FiveThirtyEight style ggplot Bayesian Methods for Hackers style Dark background Grayscale Seaborn style Three-Dimensional Plotting in Matplotlib Three-Dimensional Points and Lines Three-Dimensional Contour Plots Wireframes and Surface Plots Surface Triangulations
上传时间:2018-05 大小:33.72MB
13.90MB
PythonDataScienceHandbook[数据科学手册].zip
2019-07-16python 数据科学手册; Python Data Science Handbook
18.83MB
Python Data Science Handbook+2017.pdf (高清非扫描影音文字)带书签目录
2018-06-22Python数据科学手册 Python Data Science Handbook Essential Tools for Working with Data
12.25MB
Python数据科学手册--.pdf
2021-07-11Python数据科学手册--.pdf
20.3MB
Python Data Science Handbook+高清无码电子版+标签完整+无水印+文字可复制+最近力作
2018-08-06Python Data Science Handbook+高清无码电子版+标签完整+无水印+文字可复制+最近力作,Jake VanderPlas在2016年出版的新书,主要是关于python下数据挖掘和机器学习算法的应用教程,代码清洗可读性好,推荐给需要的朋友!
29.15MB
Python 数据科学手册(含代码)
2018-09-10本书是对以数据深度需求为中心的科学、研究以及针对计算和统计方法的参考书。本书共五章,每章介绍一到两个Python数据科学中的重点工具包。首先从IPython和Jupyter开始,它们提供了数据科学家需要的计算环境;第2章讲解能提供ndarray对象的NumPy,它可以用Python高效地存储和操作大型数组;第3章主要涉及提供DataFrame对象的Pandas,它可以用Python高效地存储和操作带标签的/列式数据;第4章的主角是Matplotlib,它为Python提供了许多数据可视化功能;第5章以Scikit-Learn为主,这个程序库为最重要的机器学习算法提供了高效整洁的Python版实现。
31.90MB
python3数据科学手册(中英高清对照版)
2018-10-16该压缩包包含两本python3数据科学手册(中文版和英文版),全是高清非扫描版
34.12MB
Python Data Science Handbook(英文pdf带目录版,包含官方提供的Notebook)
2019-01-17Python Data Science Handbook是一本优秀的python数据分析入门教材. 本资源中包含英文pdf文件和官方提供的Jupyter Notebook , 内含书上所有的代码和图表.
465KB
python数据科学手册-思维导图.xmind
2020-07-12python数据科学手册-思维导图。IPython 和 Jupyter(第 1 章) 这两个程序包为许多使用 Python 的数据科学家提供了计算环境。 NumPy(第 2 章) 这个程序库提供了 ndarray 对象,可以用 Python 高效地存储和操 作大型数组。 Pandas(第 3 章) 这个程序库提供了 DataFrame 对象,可以用 Python 高效地存储和 操作带标签的 / 列式数据。 Matplotlib(第 4 章) 这个程序库为 Python 提供了许多数据可视化功能。
20.13MB
Python Data Science Handbook.pdf
2019-05-10Python Data Science Handbook Essential Tools for Working with Data,英文原版,源生PDF,文字版,带目录,2017年新书。
20.12MB
(原版)Python Data Science Handbook
2018-07-19(原版)Python Data Science Handbook 英文版-高清。。。。。。
19.92MB
《Python Data Science Handbook》
2018-03-09《Python Data Science Handbook》文档清晰,建议使用在PC上阅读,资源完整,放心下载。
19.1MB
Python Data Science Handbook
2018-05-21Python Data Science Handbook Python Data Science Handbook Python Data Science Handbook
20.46MB
python data science handbook
2018-08-13python data science handbook-english version python data science handbook-english version
18.44MB
Python Data Science Handbook[美]Jake VanderPlas【高清版】
2019-03-28Python Data Science Handbook[美]Jake VanderPlas【高清版】,PDF
26.81MB
Python数据科学手册涉及数据文件
2018-12-20包括Numpy,Pandas,Matplotlib三个章节涉及需要下载使用的各类数据文档,包括食谱数据库案例json、地表温度数据案例等文件。
15.24MB
python数据科学手册数据及代码
2018-03-27PythonDataScienceHandbook (中文名:python数据科学手册) 完整源代码和数据! 欢迎下载使用。
19.73MB
Python Data Science Handbook 原版PDF by VanderPlas
2018-05-05This is a book about doing data science with Python, which immediately begs the question: what is data science? It’s a surprisingly hard definition to nail down, especially given how ubiquitous the term has become. Vocal critics have variously dismissed the term as a superfluous label (after all, what science doesn’t involve data?) or a simple buzzword that only exists to salt résumés and catch the eye of overzealous tech recruiters
5.85MB
The.Data.Science.Handbook.pdf
2017-02-07The Data Science Handbook is an ideal resource for data analysis methodology and big data software tools. The book is appropriate for people who want to practice data science, but lack the required ...
20.84MB
Python Data Science Handbook (Jupyter Notebook Version)
2017-12-16Python Data Science Handbook (Jupyter Notebook Version)
24.24MB
Python Data Science Handbook Essential Tools for Working with Data(epub, pdf)
2017-04-02Python Data Science Handbook Essential Tools for Working with Data
492KB
The Data Science Handbook
2018-04-29全球顶尖数据科学家的采访了。 豆瓣链接: https://book.douban.com/subject/26438775/
24.29MB
2018python参考手册第四版.pdf
2018-12-09本书是权威的Python语言参考指南,内容涉及核心Python语言和Python库的最重要部分。本书内容简洁扼要、可读性强,书中还包括了一些没有在Python官方文档或其他资料中出现过的一些高级的主题。 这一版在内容上进行了全面更新,介绍了Python 2.6和Python 3新引入的编程语言特性和库模块,同时还分析了Python程序员面临的如下难题:是应继续使用现有的Python代码,还是应制定计划将其移植到Python
7.61MB
Python Data Science Handbook Essential Tools for Working with Data epub 0分
2016-11-24Python Data Science Handbook Essential Tools for Working with Data 英文epub
21.28MB
Python Data Science Handbook - Essential tools for working with data
2018-01-20Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all-IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and ...
23.8MB
Python Real-World Data Science 无水印原版pdf
2018-03-05Python Real-World Data Science 英文无水印原版pdf pdf所有页面使用FoxitReader、PDF-XChangeViewer、SumatraPDF和Firefox测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 查看此书详细信息请在美国亚马逊官网搜索此书
13.90MB
[图灵程序设计丛书].Python数据科学手册_Python数据科学手册_
2021-10-03[图灵程序设计丛书].Python数据科学手册
23.8MB
Python_Real-World+Data+Science_A+Course+in+Four+Modules-2016.pdf
2018-02-26I love to make references to the real world when I teach coding; I believe they help people retain the concepts better. However, now is the time to be a bit more rigorous and see what coding is from a more technical perspective. [ 6 ] Chapter 1 When we write code, we're instructing a computer on what are the things it has to do. Where does the action happen? In many places: the computer memory, hard drives, network cables, CPU, and so on. It's a whole "world", which most of the time is the representation of a subset of the real world. If you write a piece of software that allows people to buy clothes online, you will have to represent real people, real clothes, real brands, sizes, and so on and so forth, within the boundaries of a program. In order to do so, you will need to create and handle objects in the program you're writing. A person can be an object. A car is an object. A pair of socks is an object. Luckily, Python understands objects very well. The two main features any object has are properties and methods. Let's take a person object as an example. Typically in a computer program, you'll represent people as customers or employees. The properties that you store against them are things like the name, the SSN, the age, if they have a driving license, their e-mail, gender, and so on. In a computer program, you store all the data you need in order to use an object for the purpose you're serving. If you are coding a website to sell clothes, you probably want to store the height and weight as well as other measures of your customers so that you can suggest the appropriate clothes for them. So, properties are characteristics of an object. We use them all the time: "Could you pass me that pen?" – "Which one?" – "The black one." Here, we used the "black" property of a pen to identify it (most likely amongst a blue and a red one). Methods are things that an object can do. As a person, I have methods such as speak, walk, sleep, wake-up, eat, dream, write, read, and so on. All the things that I can do could be seen as methods of the objects that represents me. So, now that you know what objects are and that they expose methods that you can run and properties that you can inspect, you're ready to start coding. Coding in fact is simply about managing those objects that live in the subset of the world that we're reproducing in our software. You can create, use, reuse, and delete objects as you please. According to the Data Model chapter on the official Python documentation: "Objects are Python's abstraction for data. All data in a Python program is represented by objects or by relations between objects." We'll take a closer look at Python objects in the upcoming chapter. For now, all we need to know is that every object in Python has an ID (or identity), a type, and a value.
4.42MB
Mastering-Python-for-Data-Science.pdf.pdf
2019-09-11Mastering-Python-for-Data-Science.pdf
14.20MB
python_for_data_analysis.pdf.pdf
2019-09-13python_for_data_analysis.pdf
8.91MB
Python for Data Analysis Data Wrangling with Pandas, IPython(2nd) 无水印原版pdf
2017-12-17Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython(2nd) 英文无水印原版pdf 第2版 pdf所有页面使用FoxitReader、PDF-XChangeViewer、SumatraPDF和Firefox测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 查看此书详细信息请在美国亚马逊官网搜索此书