>> syms s;
>> f=exp(-5*x)*sin(2*x)/(x^2+3*x+5);
>> f0=diff(f,x,3)
f0 =
(142*cos(2*x))/(exp(5*x)*(x^2 + 3*x + 5)) - (12*cos(2*x))/(exp(5*x)*(x^2 + 3*x + 5)^2) -
(65*sin(2*x))/(exp(5*x)*(x^2 + 3*x + 5)) + (30*sin(2*x))/(exp(5*x)*(x^2 + 3*x + 5)^2) +
(60*cos(2*x)*(2*x + 3))/(exp(5*x)*(x^2 + 3*x + 5)^2) - (63*sin(2*x)*(2*x + 3))/(exp(5*x)*(x^2 + 3*x +
5)^2) + (4*sin(2*x)*(2*x + 3))/(exp(5*x)*(x^2 + 3*x + 5)^3) + (2*sin(2*x)*(8*x + 12))/(exp(5*x)*(x^2 +
3*x + 5)^3) + (12*cos(2*x)*(2*x + 3)^2)/(exp(5*x)*(x^2 + 3*x + 5)^3) - (30*sin(2*x)*(2*x +
3)^2)/(exp(5*x)*(x^2 + 3*x + 5)^3) - (6*sin(2*x)*(2*x + 3)^3)/(exp(5*x)*(x^2 + 3*x + 5)^4)
作业 2:
1、程序代码和结果
>> syms x y z;
>> f=sin(x^2*y)*exp(-x^2*y-z^2);
>> df=diff(diff(diff(f,x,2),y),z);
>> df=simple(df);
>> latex(df)
ans =
-\frac{4\, z\, \left(\cos\!\left(x^2\, y\right) - \sin\!\left(x^2\, y\right) + 4\, x^4\, y^2\, \cos\!\left(x^2\, y\right)
+ 4\, x^4\, y^2\, \sin\!\left(x^2\, y\right) - 10\, x^2\, y\, \cos\!\left(x^2\, y\right)\right)}{\mathrm{e}^{y\, x^2
+ z^2}}