Introduction to Text Visualization


-
Nan Cao Weiwei Cui编写的文本可视化分析的书籍。全书系统介绍了各种文本信息可视化技术及应用。英文原版。有需要的自然知道这本书的好。
Moreinformationaboutthisseriesathtttp//www.atlantis-press.com Nan cao· Weiwei cui Introduction to text Visualization BATLANTIS PRESS We Cu IBMT.. Watson research center Microsoft research asia Yorktown heights ny B USA China Atlantis briefs in artificial Intelligence ISBN97894-6239-185-7 ISBN978-94-6239-186-4( ebook) DOI10.2991978-94-6239-186-4 Library of Congress Control Number: 2016950403 o Atlantis Press and the author(s)2016 This book, or any parts thereof, may not be reproduced for commercial purposes in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system known or to be invented without prior permission from the publisher. Printed on acid-tree paper Acknowledgements We would like to thank Prof. Yu-Ru Lin from University of Pittsburgh for her initial efforts on discussing the outline and the content of this book We also would like to thank Prof. Qiang Yang from the Hong Kong University of Science and Technology who invited us to write the book Contents 1 Introduction 1.1 Information visualization 1.2 Text visualization 8 1. 3 Book Outline 9 References 10 2 Overview of Text Visualization Techniques 2.1 Review Scope and Taxonomy 2.2 Visualizing Document Similarity 3 2.2.1 Projection Oriented Techniques 2.2.2 Semantic Oriented Techniques 15 2. 3 Revealing Text Content 16 2.3.1 Summarizing a Single Document 16 2.3.2 Showing content at the word level 18 2.3.3 Visualizing Topics 2.3.4 Showing Events and Storyline 24 2. 4 Visualizing Sentiments and Emotions 28 2. 5 Document Exploration Techniques 2.5.1 Distortion Based approaches 32 2.5.2 Exploration Based on document similarity 32 2.5.3 Hierarchical Document Exploration 33 2.5.4 Search and Query Based Approaches 33 2.6 Summary of the Chapter 34 References 35 3 Data model 3.1 Data Structures at the word level 43 3.1.1 Bag of words and N-gram 43 3.1.2 Word Frequency Vector 43 3.2 Data Structures at the Syntactical-Level 44 VI ontent 3.3 Data Models at the Semantic level 3.3.1 Network Oriented Data Models 45 3.3.2 Multifaceted Entity-Relational Data Model 46 3.4 Summary of the Chapter 48 References 48 4 Visualizing Document similarity 4.1 Projection Based Approaches 49 4.1.1 Linear projections 50 4.1.2 Non-linear projections 51 4.2 Semantic Oriented Techniques 54 4.3 Conclusion 55 References 55 5 Visualizing Document Content 5.1“ What We say”:Word 58 5.1.1 frequency 5.1.2 Frequency trend 67 5.2“ How We say:St 74 5.2.1 Co-occurrence Relationships 75 5.2.2 Concordance Relationships 78 5.2. 3 Grammar Structure 79 5.2.4 Repetition Relationships 82 5.3“ What can be inferred”: Substance 84 5.3.1 Fingerprint 84 5.3.2 Topics 5.3.3 Topic Evolutions 5.3. 4 Event 93 5.4 Summary of the Chapter 96 References 97 6 Visualizing Sentiments and Emotions 103 6.1 Introduction 103 6.2 Visual Analysis of Customer Comments 107 6.3 Visualizing Sentiment Diffusion 109 6. 4 Visualizing Sentiment Divergence in Social Media 6.5 Conclusion 113 References 113 Chapter 1 Introduction abstract Text is one of the greatest inventions in our history and is a major approach to recording information and knowledge, enabling easy information sharing across both space and time. For example, the study of ancient documents and books are still a main approach for us to studying the history and gaining knowledge from our predecessors. The invention of the Internet at the end of the last century significantly speed up the production of the text data. Currently, millions of websites are ger erating extraordinary amount of online text data everyday for example, facebook the worlds largest social media platform, with the help of over I billion monthly active users, is producing billions of posting messages everyday. The explosion of the data makes seeking information and understanding it difficult. Text visualization techniques can be helpful for addressing these problems. In particular, various visu alizations have been designed for showing the similarity of text documents, revealing and summarizing text content, showing sentiments and emotions derived from the text data, and helping with big text data exploration. This book provides a system atical review of existing text visualization techniques developed for these purposes Before getting into the review details, in this chapter we introduce the background f information visualization and text visualization 1.1 Information visualization In 1755, the French philosopher Denis Diderot made the following prophecy As long as the centuries continue to unfold, the number of books will grow continually, and one can predict that a time will come when it will be almost as difficult to learn anything from books as from the direct study of the whole universe. It will be almost as convenient to search for some bit of truth concealed in nature as it will be to find it hidden away in an mmense multitude of bound volumes.-Denis diderot about two and a half centuries later, this prophecy has come true we are facing a situation of Information Overload, which refers to the difficulty a person may have in understanding an issue and making decisions because of the presence of too much nformation. However, Information Overload is not mainly caused by the growth of books but mainly by the advent of the Internet o Atlantis Press and the author(s)2016 C. Nan and w. Cui, Introduction to Text Visualization Atlantis briefs in Artificial Intelligence 1, doI 10.29917978-94-6239-186-4-1 1 Introduction Several reasons could be cited for the Internet accelerating the process of infor- mation overload process. First, with the Internet, the generation, duplication, and transmission of information has never been easier. Blogging, Twitter, and Facebook provide ordinary people the ability to efficiently produce information, which could be instantaneously accessed by the whole world more and more people are considered active writers and viewers because of their participation. With the contribution of users, the volume of Internet data has become enormous For example, 16l exabytes of information were created or replicated in the Internet in 2006, which were already more than that the generated information in the past 5000 years [6]. In addition, the information on the Internet is constantly updated. For example, news websites pub lish new articles even every few minute Twitter users post millions of tweets every day, and old information hardly leaves the Internet. For this kind of huge amount of nformation analysis requires digging through historical data which clearly compli- cates understanding and decision making. Furthermore, information on the Internet s usually uncontrolled, which likely causes high noise ratio, contradictions, and inaccuracies in available information on the Internet. Bad information quality will also disorientate people, thereby causing the information overload Understanding patterns in a large amount of data is a difficult task. Sophisticated technologies have been explored to address such an issue. The entire research field of data mining and know ledge discovery are dedicated to extracting useful informa tion from large datasets or databases [5], for which data analysis tasks are usually performed entirely by computers. The end users, on the other hand, are normally not involved in the analysis process and passively accept the results provided by computers These issues could be addressed via information visualization techniques whose primary goal is to assist users see information, explore data, understand insightful data patterns, and finally supervise the analysis procedure. Research in this filed are motivated by the study of perceptions in psychology. Scientists have shown that our brains are capable of effectively processing huge amounts of information and signals in a parallel way when they are properly visually represented. By turning huge and abstract data, such as demographic data, social networks, and document corpora into visual representations, information visualization techniques help users discover patterns buried inside the data or verify the analysis result Various definitions of information visualization exist [1, 3, 7] in current literature One of the most commonly adopted definitions is that of Card et al. [2 ]: the use of computer-supported, interactive visual representations of abstract to amplify cogni- tion. This definition highlights how visualization techniques help with data analysis i.e., the computer roughly processes the data and displays one or some visual rep resentations; we, the end users, perform the actual data analysis by interacting with the representations a good visualization design is able to convey a large amount of information with minimal cognitive effort. Considered as a major advantage of visualization techniques, this feature is informally described by the old saying" picture is worth

4.92MB
QT data Visualization 5.9 -3d plot
2019-01-185.9版本,可以绘制使用的3d图,有用的QT插件,希望有用吧
27.99MB
Visualization And Graphics
2019-04-18这是关于可视化与图形的电子书,高清,最新版本,经典著作,英文版
4.20MB
An Introduction to Text Mining: Research Design, Data Collection, and Analysis
2019-01-31An Introduction to Text Mining: Research Design, Data Collection, and Analysis By 作者: Gabe Ignatow –
24.23MB
Introduction to High Performance Scientific Computing,2nd ,2014
2017-08-21Introduction to High-Performance Scientific Computing,第二版,2014 This text evolved from a new curricul
5.37MB
Python.Crash.Course.A.Hands-On.Project-Based.Introduction.to.Programming
2016-05-16Python Crash Course is a fast-paced, thorough introduction to programming with Python that will have
8.15MB
The Text Mining Handbook. Advanced Approaches in Analyzing Unstructured Data.pdf
2011-06-04Preface page x I. Introduction to Text Mining 1 I.1 Defining Text Mining 1 I.2 General Architecture
11.14MB
Beginning.R.An.Introduction.to.Statistical.Programming.2nd.Edition.148420
2015-12-04Beginning R, Second Edition is a hands-on book showing how to use the R language, write and save R s
47.98MB
Fundamentals of Computer Graphics英文.pdf
2019-07-25Fundamentals of Computer Graphics英文 计算机图形基础 With contributions by Michael Ashikhmin, Michael Gleiche
233KB
graphics and guis with matlab 1, third edition
2009-02-23CONTENTS 1 INTRODUCTION 1.1 OVERVIEW 1.2 ORGANIZATION OF THIS BOOK 1.3 TERMINOLOGY AND THE MATLAB PR
4.5MB
Mayavi 参考
2014-07-10Mayavi 的参考手册,适合初学者和expert。 User guide: full table of contents An overview of Mayavi Introduction Wha
9.33MB
Graphics and GUIs with matlab 3, third edition
2009-02-23Graphics and GUIs with matlab, third edition CONTENTS 1 INTRODUCTION 1.1 OVERVIEW 1.2 ORGANIZATION O
25.25MB
Data.Mining.for.Business.Analytics.Concepts.Techniques.and.Applications.in.R
2017-12-04Data Mining for Business Analytics: Concepts, Techniques, and Applications in R presents an applied
3.35MB
Learning.Predictive.Analytics.with.R.1782169350
2015-10-05Get to grips with key data visualization and predictive analytic skills using R About This Book Acqu
18.37MB
医学图像基础 Fundamentals of Medical Imaging 2Edition
2009-11-25此资源为18M的PDF MedVis曾发布过10M压缩版,内容一样,图像稍微有模糊: http://download.csdn.net/source/1830518 请自取所需 《医学图像基础》Fun
80.74MB
Fundamentals of Computer Graphics 4th Edition
2018-09-25Drawing on an impressive roster of experts in the field, Fundamentals of Computer Graphics, Fourth E
29.73MB
Dynamical Systems with Applications using Python 2018
2018-12-16This textbook provides a broad introduction to continuous and discrete dynamical systems. With its h
161.26MB
垃圾分类数据集及代码
2020-11-11资源说明: 数据集主要包括6类图片:硬纸板、纸、塑料瓶、玻璃瓶、铜制品、不可回收垃圾 代码运行说明: 1、 安装运行项目所需的python模块,包括tensorflow | numpy | keras
Python金融数据分析入门到实战
2019-09-26会用Python分析金融数据 or 金融行业会用Python 职场竞争力更高 Python金融数据分析入门到实战 掌握金融行业数据分析必备技能 以股票量化交易为应用场景 完成技术指标实现的全过程 课程选取股票量化交易为应用场景,由股票数据的获取、技术指标的实现,逐步进阶到策略的设计和回测,由浅入深、由技术到思维地为同学们讲解Python金融数据分析在股票量化交易中的应用。 以Python为编程语言 解锁3大主流数据分析工具 Python做金融具有先天优势,课程提取了Python数据分析工具NumPy、Pandas及可视化工具Matplotlib的关键点详细讲解,帮助同学掌握数据分析的关键技能。 2大购课福利
零基础Python数据分析特训营-直播回放
2020-07-07作为投资者,我们常听到的一句话是“不要把鸡蛋放入同一个篮子,可见分散投资可以降低风险,但如何选择不同的篮子、便是见仁见智的事情了,数据分析就是解决这些问题的一工具。在本次数据分析训练营分为四天,前 2天为 Python 编码技术部分,可以帮助学习者快速上手Python数据处理;后2天为数据分析部分,借助通联数据平台的策略建立,实现实际项目结合,将各种策略代码直接开源,并且对各种策略进行了介绍与点评,通过数据分析支撑决策,可谓本次训练营的精华部分。
1.49MB
基于物品的协同过滤算法实现图书推荐系统源码
2021-02-04py,itemcf,论文:https://blog.csdn.net/ancientear/article/details/100067170
932KB
自动抢茅台脚本.zip
2021-01-25自动抢购飞天茅台脚本,亲测有效,已经抢到2瓶(python和go两种语言,Windows和Mac版本都有),支持京东、天猫平台,立即下载保存,避免被失效!
15.89MB
Java 面经手册·小傅哥(公众号:bugstack虫洞栈).pdf
2021-01-26这是一本以面试题为入口讲解 Java 核心内容的技术书籍,书中内容极力的向你证实代码是对数学逻辑的具体实现。当你仔细阅读书籍时,会发现Java中有大量的数学知识,包括:扰动函数、负载因子、拉链寻址、开
Python自动化爬虫实战与高级架构技巧
2020-07-22讲解基于Python Selenium 的自动化数据采集,自动化框架设计,SEO搜索收录引擎与接口对接等实战项目
YOLOv4目标检测实战:人脸口罩佩戴检测
2020-05-03课程演示环境:Ubuntu 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:人脸口罩佩戴检测》 课程链接:https://edu.csdn.net/course/detail/29123 当前,人脸口罩佩戴检测是急需的应用,而YOLOv4是最新的强悍的目标检测技术。本课程使用YOLOv4实现实时的人脸口罩佩戴检测。课程提供超万张已标注人脸口罩数据集。训练后的YOLOv4可对真实场景下人脸口罩佩戴进行高精度地实时检测。 本课程会讲述本项目超万张人脸口罩数据集的制作方法,包括使用labelImg标注工具标注以及如何使用Python代码对第三方数据集进行修复和清洗。 本课程的YOLOv4使用AlexyAB/darknet,在Ubuntu系统上做项目演示。具体项目过程包括:安装YOLOv4、训练集和测试集自动划分、修改配置文件、训练网络模型、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类分析。 YOLOv4人脸口罩佩戴检测效果
C++入门基础视频精讲
2018-09-28本课程讲述了c++的基本语言,进阶语言,以实战为基准,高效率传递干货, 教会学员命令行编译直击底层过程,现场编码 并且掌握各种排错思路
-
下载
基于fpga的verilog语言的83编码器
基于fpga的verilog语言的83编码器
-
下载
基于springboot实现表单重复提交.docx
基于springboot实现表单重复提交.docx
-
博客
【已解决】IDEA 配置tomcat后,javaweb项目报404
【已解决】IDEA 配置tomcat后,javaweb项目报404
-
学院
Samba 服务配置与管理
Samba 服务配置与管理
-
下载
情感励志类短视频素材
情感励志类短视频素材
-
学院
使用 Linux 平台充当 Router 路由器
使用 Linux 平台充当 Router 路由器
-
下载
java注解和反射的个人学习笔记
java注解和反射的个人学习笔记
-
学院
PPT大神之路高清教程
PPT大神之路高清教程
-
下载
上海大学《高等代数》2000到2009历年考研真题.pdf
上海大学《高等代数》2000到2009历年考研真题.pdf
-
下载
维纳尔.电气设备选型资料大全 (适合刚刚入行的电气工程师对设备进行选型规划)详解
维纳尔.电气设备选型资料大全 (适合刚刚入行的电气工程师对设备进行选型规划)详解
-
下载
唯恩.rar电气设备选型资料大全 (适合刚刚入行的电气工程师对设备进行选型规划)详解 报价
唯恩.rar电气设备选型资料大全 (适合刚刚入行的电气工程师对设备进行选型规划)详解 报价
-
下载
linux c 进程间通信 消息队列
linux c 进程间通信 消息队列
-
下载
Hi3516CV500╱Hi3516DV300 SDK 安装及升级使用说明.pdf
Hi3516CV500╱Hi3516DV300 SDK 安装及升级使用说明.pdf
-
博客
hebing
hebing
-
学院
MySQL 高可用(DRBD + heartbeat)
MySQL 高可用(DRBD + heartbeat)
-
下载
STM32F4-3-运行LVGL基础案例.rar
STM32F4-3-运行LVGL基础案例.rar
-
下载
辅助控制器来料检验规范模版.docx
辅助控制器来料检验规范模版.docx
-
博客
web前端--重要知识点
web前端--重要知识点
-
学院
基于电商业务的全链路数据中台落地方案(全渠道、全环节、全流程)
基于电商业务的全链路数据中台落地方案(全渠道、全环节、全流程)
-
博客
最近在写毕业论文
最近在写毕业论文
-
学院
VMware vSphere ESXi 7 精讲/VCSA/VSAN
VMware vSphere ESXi 7 精讲/VCSA/VSAN
-
下载
信息安全管理与信息安全体系实践.ppt
信息安全管理与信息安全体系实践.ppt
-
博客
php软件开发--php进阶
php软件开发--php进阶
-
学院
基于Qt的LibVLC开发教程
基于Qt的LibVLC开发教程
-
学院
MySQL Router 实现高可用、负载均衡、读写分离
MySQL Router 实现高可用、负载均衡、读写分离
-
下载
vue-demo2.zip
vue-demo2.zip
-
博客
集合
集合
-
博客
php实现上传图片保存到数据库的方法
php实现上传图片保存到数据库的方法
-
学院
MySQL 多实例安装 及配置主从复制实验环境
MySQL 多实例安装 及配置主从复制实验环境
-
博客
JAVA 8与JAVA 11到底该怎么选?
JAVA 8与JAVA 11到底该怎么选?