费曼强烈推荐的经典教材_Advance_Calculus_by_woods

-
woods的高等微积分,费曼当年学过的,强烈推荐。 woods的高等微积分,费曼当年学过的,强烈推荐。
PREFACE The Fourier series are introduced later as tools for solving certain partial differential equations, but no attempt has been made to develop their theory The subjects treated in the book may be. most easily seen by examining the table of contents. Experience has shown that the book may be covered in a years course FREDERICK S WOODS NoTE FOR THE 1982 PRINTING. In this impression of the book certain improvements have been made. In particular, Osgood's theorem has been inserted in Chapter I, the discussion of uniform convergence in Chapter II has been improved, and the treatment of the plane in Chapter V has been changed PREFACE TO THE NEW EDITION In this edition additional exercises have been inserted at the end of most chapters. Also, in Chapter VI, certain proofs have been made more rigorous namely, that for the existence of the definite integral and that for the possibility of differentiating under the integral sign a definite integral with upper limit infinity. All the typographical errors that have been discovered have been corrected FREDERICK S WOODS CONTENTS CHAPTER I. PRELIMINARY SECTION PAGE 1. Functiong 2. Continuity 3. The derivative 4. Composite functions 5. Rolle' s theorem 125778 6. Theorem of the mean d. Taylors series with a remainder 10 8. The form 15 0 9. The form 16 10. Other indeterminate forms 18 11. Infinitesimals 19 12. Fundamental theorems on infinitesimals 22 13. Some geometric theorems involving infinitesimals 23 14. The first differential 28 15. Higher differentials 29 16. Change of variable 92 CHAPTER II. POWER SERIES 17. Definitions 88 18. Comparison test for convergence 。,,,,40 19. The ratio test for convergence 41 20 Region of convergence 42 21. Uniform convergenee 45 22. Function defined by a power series 45 23. Integral and derivative of a power series 46 24. Taylor,'s series 48 25 Operations with two power series 51 26. The exponential and trigonometric functions .......... 53 27. Hyperbolic functions 55 28. Dominant functiong 57 29. Conditionally convergent series CHAPTER III. PARTIAL DIFFERENTIATION 80. Functions of two or more variables 65 31. Partial derivatives 66 32. Order of differentiation 68 88 Diferentiation of composite functiong 69 CONTENTS SECTION PAGE 34. Euler@g theorem on homogeneous functions 73 35. Directional derivative 74 6。 The frst differential 78 37. Higher differentials 84 38. Taylor's serie 85 CHAPTER IV. IMPLICIT FUNCTIONS 89. One equation, two variables 91 40, One equation, more than two variables 93 41. Two equations, four variables 95 42. Three equations, six variables 97 43. The general case 98 44。 Jacobians, 99 CHAPTER V. APPLICATIONS TO GEOMETRY 45。 lement of arc., 106 46. Straight line 108 47 Surfaces 109 48. planes 110 49. Behavior of a surface near a point ,112 50. Maxima and minima 116 51. Curves 118 52. Curvature and torsion 121 53, Curvilinear coordinates 124 CHAPTER VI. THE DEFINITE INTEGRAL 54. Derinition 134 56. Existence proof 135 56. Properties of definite integrals 137 57. Evaluation of a definite integral 138 58. Simpson's rule 39. Change of variableg 139 ,。140 60, Differentiation of a definite integral 141 61. Integration under the integral sign 145 62. Infinite limit 146 68. Differentiation and integration of an integral with an infinite limit. 148 64. Infinite integrand 161 65. Certain definite integrals 153 66. Multiple integrals 156 CHAPTER VII. THE GAMMA AND BETA FUNCTIONS 67. The Gamma function 164 68. The Beta function 166 69. Dirichlet's integrals 167 70. Special relations 169 CONTENTS CHAPTER XVI. ELLIPTIC INTEGRALS BGION PAGE 161. Introduction 366 152. The functions sn u, cn u, dn u 367 150. Application to the pendulum 369 164. Formulas of differentiation and series expansion 371 155. Addition formulas 372 156. The periods 873 157.: cases 376 158 Elliptic integrals in the complex plane 376 169. Elliptic integrals of the second kind and of the third kind 879 160. The function p(u) 881 161. Applications 382 ANSWERS 887 INDEX 395 ADVANCED CALCULUS CHAPTER I PRELIMINARY 1. Functions. A quantity y is said to be a function of a nuan tity a if the value of y i8 determined when the value of a is given. Elementary examples are the familiar algebraic, trigonometric logarithmic, and exponential functions by means of which y is explicitly given in terms of a. Such explicit formulation, how ever, is not necessary to the idea of a function For example, y may be the number of cents of postage on a letter and the number of ounces in its weight or y may be defined as the largest prime number which is smaller than any number a, or y may be defined as equal to 0 if a is a rational number and equal to l if a is an irrationel number. It should be - noticed, moreover, that even when an explicit formulation in elementary functions is possible, y need not be defined by the same formula for all values of n. For example, consider a spherical shell of inner radius a and outer radius b composed of matter of density p. Let a be the dis- ance of a point from the center of the shell and y the gravita- tional potential due to the shell. Then y is a function of a with the following formulation y=2 p(b-a when 2 a v=2丌p(b2 Tp when芝 4丌 8 (b3-a)when a >b o we may at pleasure build up an arbitrary function of For example, let y=f(a), where f(c)=2x2 when 0 <x <1, f(x)=景 when 0=1, f(x)=景x+1 when x>1 2 PRELⅠ MINARY We shall say that values of a which lie between a and b deter- mine an interval (a, 6). The interval may or may not include the values a and b, according to the con- text. In general, however the inter- vals (a, b) will mean the values of a defined by the statement a≡≡b The student is supposed to be fa- miliar with the representation of a function by a graph. Such a repre- sentation is usually possible for theO C functions we shall handle in this book FIG. 1 although it is impossible for the func- tion mentioned in the third example of this section. The in- terval(a, b)appears in the graph as the portion of the axis of between a=a and =b, and it will be Y convenient to speak of a point of the interval, meaning a value of u in the interval. Then r=a and x=b are the end-points of the interval. As men- tioned above, the interval may or may not have end-points. The graph of the potential function in (1 is the curve of Fig 1. The graph has O x no breaks and the function is continuous FIG 2 (9 2), but the character of the curve and of the function is different in the three intervals considered The graph of the function in(2) is the curve of Fig. 2. This graph has a break at the point for which x= 1. 2. Continuity. A function f(a)is continuous when a =a for which fla is defined if Iim[f(+b)一f()]=0, 0 or, otherwise expressed, if Limf(a+h)=f(a) h→0 where in either formula the limit is independent of the manner in which h approaches 0 Since h is an increment added to a, and f(a+h-f(a is the corresponding increment of f(a), we may express this definition as follows A function of r is continuous for a given value of a if the increment of the function approaches zero as the increment of a approaches zero. CONTINUITY 3 A more cumbersome definition, but one which brings out the full meaning of equation(1), is as follows f(a)is continuous for a=a when if e is any assigned positive quantity, no matter how small, it is possible to determine another positive antity 8 so-that the difference in absolute valae between f(a+ h)and f(a) shall be less than e for all values of h numerically less than 8, that is I f(a+h)-f(a)I<E when h <8 (3) Graphically, e having been given, there can be found an interval (a+h,a-h)in which I f(ec)-f(a)I<e at all points of the interval Consider the function defined by the equations 10 when a≠0, 1+ ∫(0)=0, the graph of which is shown in Fig 3. Here f(0+h)f(o)when h ap proaches zero through positive values FIG. 3 andf(0+b)→10≠f(0) when h ap- proaches zero through negative values. Hence the function is not continuous when r=0. There is no interval (h, h in which I f(a)-f(0) <E. Furthermore, while the definition of f(o) in(4)is arbi- trary, it is not possible to define f(o) so that the function is continuous It is to be noticed that f()is not continuous for a s a if f(a) is infi- nite. ' This expression means that x f(a+ h)can be made numerically larger than any assigned positive quantity by taking h sufficiently small; or, more precisely, if M is a positive number no matter how large then a FIG. 4 number s can be determined so that I f(a+h)I>M for h <8. The definition of cotinuity cannot then be satisfied for =a. 1 For example, the functions -(Fig 4)and -a(Fig. 5)are each discontinuous for r=0. as is shown by the break in each of the curves representing the functions. PRELIMINARY The following theorems are of fundamental importance in handling continuous functions 1. If f(a) is continuous at all points of an interval (a, b, it is possible to find a positive number s such that in all subin tervals of(a, b)less than s the absolute value of the difference betwveen any two values of f(ec) is less than E when E is a positive quantity given in advance. We shall not give a formal proof. It s not difficult to see that if these theo rems were not true, definition 3)for continuity must fail for at least one point of (a, b). Because of the property X stated in the theorem, f(a)is said to be uniformly continuous in(a, b) FIG. 5 II. If f(e)is continuous for all values of a between a and b inclu Y sive, if f(a)=A and f(b)=B, and if n is any value betueen A and B, then f(a)= N for at least one value of s between a andb. B N M FIG. 6 FIG. 7 IIL. If f(e)is continuous for all values of a between a and b inclu sive, then f(e)has a largest value M for at least one value of a between a Y and b and a smallest value m for at least some other value of a between a and b These theorems seem to be inherent in the very nature of continuity and are graphically evident from Figs. 6. 7. and 8. As a matter of fact. how- X ever, they are not self-evident and FIG8

37.83MB
微积分经典教材 打包下载
2012-07-31Tomas 微积分经典教材,全英文pdf版本。 另外打包了一些中文版的微积分教程,包括国内较好的同济大学的高等数学。
7.19MB
最经典的微积分入门书籍,没有之一
2016-05-15很好的微积分入门。特别是先讲积分再讲微分,让人概念上不会糊涂。很多人学了半天还不知道定积分跟求不定积分(求原函数)的区别。这书的讲法不会让人犯糊涂。总之这是一本很好的书,也是我最喜欢的微积分书之一。
6.42MB
Woods--Elementary_Calculus
2018-02-24woods的初等微积分,费曼强烈推荐 woods的初等微积分,费曼强烈推荐
14.10MB
经典物理学教材《费曼物理学讲义 第一卷》
2009-09-17伟大的物理学家费曼的经典著作《费曼物理学讲义 第一卷》虽然年代已久,但依旧经典。希望大家不要错过
10.96MB
经典物理学教材《费曼物理学讲义 第二卷》
2009-09-17伟大的物理学家费曼的经典著作《费曼物理学讲义 第一卷》虽然年代已久,但依旧经典。希望大家不要错过
7.54MB
经典物理学教材《费曼物理学讲义 第三卷》
2009-09-17伟大的美国物理学家费曼的经典著作《费曼物理学讲义 第三卷》虽然年代已久,但依旧经典。希望大家不要错过
22.6MB
费曼物理学讲义
2012-12-05费曼物理学讲义(第1册) 费曼物理学讲义(第1册)
562KB
别逗了,费曼先生(英文版)
2015-03-18Richard P Feynman - Surely You're Joking Mr Feynman,《别逗了,费曼先生》的英文版。
560KB
别闹了,费曼先生
2018-05-09理查德·菲利普斯·费曼(Richard Phillips Feynman,1918年5月11日—1988年2月15日),美籍犹太裔物理学家,加州理工学院物理学教授,1965年诺贝尔物理奖得主
83.23MB
(I+II+III)费曼物理学讲义
2017-11-12物理大师深入浅出讲解基础物理。 费曼物理学讲义(The Feynman's Lectures on Physics) 被誉为本世纪最经典的物理导引。 《费曼物理学讲义》是根据诺贝尔物理学奖获得者-理查
2.64MB
【费曼物理资料大全集】Smirnov.-.Feynman.Integral.Calculus.(Springer,.2006)
2009-07-19This is a textbook version of my previous book . Problems and solutions have been included, Appendix
298KB
电子书别闹了费曼先生
2015-02-14非常适合编程累了的时候看,尤其推荐学习python语言的同学们下载
4.16MB
量子力学讲座-费曼
2017-11-12费曼先生的量子力学讲座记录 1.引言 2.光子:光的粒子 3.电子和它们的相互作用 4.松散的结尾
974KB
椭圆费曼积分和纯函数
2020-03-29我们提出了椭圆形多重对数的一种变体,该变体在所有变量中至多具有对数奇异性,并且满足一个不带齐项项的微分方程。 我们研究了几个具有多达三个外部支路的非平凡椭圆两环费曼积分,并用我们的函数表示它们。 我们
18.90MB
费曼物理学讲义中文版part1
2018-09-22经典的物理学书籍,能对世界的本质有更深刻的理解,值得一读
2.64MB
《发现的乐趣》[美]费曼著 张郁乎译-
2016-11-08《发现的乐趣》费曼著 张郁乎译-
4.24MB
费曼处理器:量子计算机简介
2018-09-07费曼处理器:量子计算机简介,对量子计算机的介绍,能帮忙我们了解今后计算机的发展趋势。
7.45MB
Feynman Lectures on Physics(vol. 1).djvu 费曼物理学讲义(英文版)
2009-08-15大名鼎鼎的费曼物理学讲义(英文版)!Feynman Lectures on Physics 分卷djvu格式! 先进的djvu格式在不损失原pdf质量的情况下,可将原pdf文档(原来有八十多兆)压缩成
532KB
费曼积分和交集理论
2020-04-18我们将相交理论的工具介绍给费曼积分研究,这为将积分投影到基础上提供了一种新方法。 为了说明此技术,我们考虑了任意时空维度上最大割的Baikov表示。 我们介绍了在对应积分周期边界上具有对数奇异性的微分
1.23MB
论文研究 - 关于费曼棘轮和布朗电机
2020-05-30我们从费曼的建议开始研究布朗棘轮条件。 我们表明该建议是不完整的,实际上是行不通的。 我们为此棘轮提供了正确的模型。
543KB
狄拉克费米子在德西特扩展宇宙上的费曼传播子的整体表示
2020-03-22狄拉克费米子的传播子在$$(1 + 3)$$ <math> <mrow> <mo>(</ mo> <mn> 1 </ mn> <mo> + </ mo> <mn> 3 </ mn> <mo
448KB
散射方程和费曼图
2020-04-07我们在Cachazo,He和Yuan的散射方程式中显示了单个Feynman图和积分测度之间的直接匹配。 用φ3-理论中与平面费曼图相关的三角图最容易解释这种连接。 我们还将讨论对具有φp相互作用的一般
44KB
There's Plenty of Room at the Bottom ---费曼
2009-10-06费曼作为物理学大师有过众多的学术成就,这是一篇他早在1959年的报告,他预言了纳米世界的诸多问题,试想那个时候还根本没有研究到纳米领域的工作,他居然预言了诸多后来在纳米科技中的事情,不愧是一代物理大师
36.41MB
费曼物理学讲义第一卷
2013-02-06费曼物理学讲义第一卷 rtrtrtretrtfdafjids
28.17MB
费曼物理学讲义 - 新千年版 - 高清英文版 - 非扫描 - 可全文搜索 - 目录完整
2017-08-16费尽千辛万苦找到,故有偿分享。
6.28MB
大物理学家费曼关于\物理定律的著作
2009-06-19大物理学家费曼的著作,费曼是诺贝尔物理奖获得者,课也讲得很好,所以他的书很值得一看
919KB
CHY构造中的高阶极的费曼规则
2020-04-09在本文中,我们将散射方程的积分规则推广到存在高阶极点的情况。 我们描述了从已知的简单CHY积分的解析结果推论高阶极的费曼规则的策略,并提出了单双极和三极以及双双极和三重-双极结构的费曼规则。 我们通过
1.30MB
切Feynman积分的图解Hopf代数:一圈情况
2020-04-02我们构造作用于一环Feynman图及其割的图解协作。 这些图自然会通过尺寸正则化中的相应(切)费曼积分来标识,该维恩积分在尺寸调节器中的洛朗膨胀系数是多个对数(MPL)。 我们的主要结果是这样的猜想,
10.11MB
朗道物理系列 统计力学 中文版
2010-03-22和费曼物理学讲义齐名的物理经典教材--朗道物理学系列丛书,这是其中之一的统计力学部分。
-
下载
基于混合推荐系统的在线题库和考试系统 (1).doc
基于混合推荐系统的在线题库和考试系统 (1).doc
-
下载
Word常用查找与替换实例及方法(64例).pdf
Word常用查找与替换实例及方法(64例).pdf
-
学院
SubstancePainter插件开发-基础入门
SubstancePainter插件开发-基础入门
-
下载
多功能数字时钟.zip
多功能数字时钟.zip
-
学院
【数据分析-随到随学】数据分析建模和预测
【数据分析-随到随学】数据分析建模和预测
-
博客
05:程序基础
05:程序基础
-
博客
TS - typescript 类(class)
TS - typescript 类(class)
-
下载
C语言实验报告三.pdf
C语言实验报告三.pdf
-
学院
三维地图GIS大数据可视化
三维地图GIS大数据可视化
-
学院
【数据分析-随到随学】机器学习模型及应用
【数据分析-随到随学】机器学习模型及应用
-
博客
rhcsa(4)
rhcsa(4)
-
学院
单片机完全学习课程全五季套餐
单片机完全学习课程全五季套餐
-
学院
flutter插件调用APP页面、使用原生aar,framework库
flutter插件调用APP页面、使用原生aar,framework库
-
下载
Redis笔记.md
Redis笔记.md
-
学院
RabbitMQ消息中间件实战(附讲义和源码)
RabbitMQ消息中间件实战(附讲义和源码)
-
下载
macOS下mysql5.7安装包
macOS下mysql5.7安装包
-
下载
C语言实验报告二.pdf
C语言实验报告二.pdf
-
学院
MFC开发简单聊天程序
MFC开发简单聊天程序
-
博客
黑群晖核显硬解,不重装系统的方法,直接替换文件emby,Jellyfin等开硬解
黑群晖核显硬解,不重装系统的方法,直接替换文件emby,Jellyfin等开硬解
-
博客
2021-01-20
2021-01-20
-
下载
esp32s2的arduino开发环境
esp32s2的arduino开发环境
-
学院
2021最新Kubernetes(k8s)集群实战精讲
2021最新Kubernetes(k8s)集群实战精讲
-
博客
全志ANDROID10 在根目录下创建挂载点.
全志ANDROID10 在根目录下创建挂载点.
-
下载
海湾消防主机调试软件
海湾消防主机调试软件
-
博客
2021-01-20
2021-01-20
-
下载
C语言实验报告五.pdf
C语言实验报告五.pdf
-
学院
android笔试面试和实战课程
android笔试面试和实战课程
-
博客
JVM学习笔记(一)体系结构,类加载器,加载机制
JVM学习笔记(一)体系结构,类加载器,加载机制
-
博客
Ntttcp 网络测试工具使用方法
Ntttcp 网络测试工具使用方法
-
下载
arduino-1.8.13-windows.zip
arduino-1.8.13-windows.zip