Data.Science.from.Scratch.First.Principles.with.Python


-
Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases Table of Contents Chapter 1. Introduction Chapter 2. A Crash Course in Python Chapter 3. Visualizing Data Chapter 4. Linear Algebra Chapter 5. Statistics Chapter 6. Probability Chapter 7. Hypothesis and Inference Chapter 8. Gradient Descent Chapter 9. Getting Data Chapter 10. Working with Data Chapter 11. Machine Learning Chapter 12. k-Nearest Neighbors Chapter 13. Naive Bayes Chapter 14. Simple Linear Regression Chapter 15. Multiple Regression Chapter 16. Logistic Regression Chapter 17. Decision Trees Chapter 18. Neural Networks Chapter 19. Clustering Chapter 20. Natural Language Processing Chapter 21. Network Analysis Chapter 22. Recommender Systems Chapter 23. Databases and SQL Chapter 24. MapReduce Chapter 25. Go Forth and Do Data Science
Data science from scratch Joel grus Beng. Cambridge. Farnham·Kn· Sebastopol, Tokyo OREILLY° Data Science from scratch by Joel grus Copyright o 2015 OReilly Media. All rights reserved Printed in the United states of america Published by O reilly Media, Inc, 1005 Gravenstein Highway North, Sebastopol, CA95472 OReilly books may be purchased for educational, business, or sales promotional use. Online editions are alsoavailableformosttitles(http://safaribooksonline.com).Formoreinformationcontactourcorporate institutionalsalesdepartment800-998-9938orcorporate@oreilly.com Editor: Marie Beaugureau Indexer: Ellen Troutman-Zaig Production Editor: Melanie Yarbrough Interior Designer: David Futato Copyeditor: Nan Reinhardt Cover Designer: Karen Montgomer Proofreader: Eileen cohen Illustrator: Rebecca Demarest April 2015 First edition Revision History for the First Edition 2015-04-10: First Release Seehttp://oreilly.com/catalog/errata.csp?isbn=9781491901427forreleasedetails The O reilly logo is a registered trademark of o reilly media, Inc. Data Science from Scratch, the cover image of a rock Ptarmigan, and related trade dress are trademarks of o reilly media, inc While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/ or rights 978-1-491-90142-7 ILSI Table of contents Preface XI 1. Introduction The ascend: of da What is data science? Motivating Hypothetical: DataSciencester Finding Key Connectors 111236 Data Scientists You May Know Salaries and Experience 8 Paid Accounts Topics of Interest Onward 2. A Crash Course in Python The Ba Getting pith g non P e zen or Py on Whitespace Formatting Arithmetic Functions 35556678899 Strings Exceptions Lists 20 Tuples 21 Dictionaries 21 ets 24 Control flo 25 Truthiness 25 The Not-So-Basics ng 27 List Comprehensions 27 Generators and iterators 28 Randomness 29 Regular Expressions 30 Object-Oriented Programming 30 Functional tools 31 enumerate 32 zip and argument Unpacking 33 args and kwargs 34 Welcome to dataSciencester 35 For Further Exploration 35 3. Visualizing Data matplotlib 37 Bar charts 39 Line charts 43 terplots 44 For Further Exploration 47 4. Linear Algebra 49 Vectors 49 Matrices 53 For Further Exploration 55 5. Statistics 57 Describing a Single Set of data 57 Central Tendencies 59 Dispersion 61 Correlation 62 Simpsons paradox Some other correlational caveats 66 Correlation and causation 67 For Further Exploration 68 6. Probabili ,,,69 Dependence and independence Conditional Probability 70 Bayes's Theorem 72 Random variables iv Table of Contents Continuous distributions The normal Distribution The Central Limit Theorem 78 For Further exploration 80 7. Hypothesis and Inference n81 Statistical Hypothesis Testing 81 Example: Flipping a Coin 81 Confidence intervals P-hacking 86 Example: Running an A/B Test 87 Bayesian Inference 88 For Further Exploration 92 8. Gradient descent The Idea behind gradient Descent 93 Estimating the gradient 94 Usi g the Gradient 97 Choosing the right Step size 97 Putting it all together 8 Stochastic gradient descent 99 For Further Exploration 100 Getting Data 103 stdin and stdout 103 Reading files 105 The Basics of Text files 105 Delimited files 106 Scraping the Web 108 HTML and the parsing Thereof 108 Example: O Reilly books about Data 110 Using APIs 114 jSON (and XML) 114 Using an Unauthenticated API 115 Finding apis 116 Example: Using the Twitter APIs 117 Getting Credentials 117 For Further Exploration 120 10. Working with Data. 121 Exploring Your Data 121 Exploring one-Dimensional Data 121 Table of contents Two Dimensions 123 Many dimensions 125 Cleaning and Munging 127 Manipulating data 129 Rescaling 132 Dimensionality Reduction 134 For Further Exploration 139 11. Machine Learning 141 Modeling 141 What Is Machine Learning 142 Overfitting and Underfittin g 142 Correctness 145 The Bias-Variance Trade-off 147 Feature Extraction and selection 148 For Further Exploration 150 12. k-Nearest Neighbors. 151 The model 151 Example: Favorite Languages 153 The Curse of Dimensionality 156 For Further Exploration 163 13. Naive bayes. 165 A Really Dumb Spam Filter 165 A More Sophisticated Spam Filter 166 Implementation 168 Testing Our Model 169 For Further Exploration 172 14. Simple linear regression ,173 The model 173 Using gradient Descent 176 Maximum Likelihood estimation 177 For Further Exploration 177 15. Multiple Regression.…,,…, The model 179 Further Assumptions of the Least Squares Model 180 Fitting the model 181 Interpreting the model 182 Goodness of Fit 183 Table of contents Digression: The Bootstrap 183 Standard Errors of Regression Coefficients 184 Regularization 186 For Further Exploration 188 16. Logistic Regression The Problem 189 The Logistic Function 192 Applying the Model 194 Goodness of Fit 195 Support Vector Machines 196 For Further Investigation 200 17. Decision trees 201 What is a decision tree? 201 Entropy 20 The entropy of a partition 205 Creating a Decision Tree 206 Putting It All Together 208 Random forests 211 For Further Exploration 212 18. Neural Networks.44....4..213 Perceptrons 213 Feed-Forward Neural Networks 215 Ba backpropagation 218 Example: Defeating a CAPTCHA 219 For Further Exploration 224 19.〔 lustering 225 The idea 225 The model 226 Example: Meetups 227 Choosing k 230 Example: Clustering Colors 231 Bottom-up Hierarchical Clustering 233 For Further Exploration 238 20. Natural Language Processing ,239 Word Clouds 239 n-gram Models 241 Grammars 244 Table of contents|ⅶi An Aside: Gibbs Sampling 246 Topic Modeling 247 For Further Exploration 253 21. Network analysis 255 Betweenness Centrality 255 Eigenvector Centrality 260 Matrix Multiplication 260 Centrali 262 Directed Graphs and PageRank 264 For Further Exploration 266 22. Recommender systems. 267 Manual curation 268 Recommending What's Popular 268 User-Based Collaborative Filtering 269 Item-Based Collaborative Filtering 272 For Further Exploration 274 23. Databases and SQL............................ 275 CREATE TABLE and INsert 275 UPDATE 277 DELETE 278 SELECT 278 GROUP BY 280 ORDER BY 282 JOIN 283 Subqueries 285 Indexes 285 Query optimization 286 NOSQL 287 For Further exploration 287 24. Map Reduce 289 Example: Word Count 289 Why map reduce? 291 Map Reduce More Generally 292 Example: Analyzing Status Updates 293 Example: Matrix Multiplication 294 An aside: Combiners 296 For Further Exploration 296 I Table of Contents

-
2020-09-11
-
2019-11-04
-
2019-03-26
-
2019-01-01
-
2018-08-15
-
2017-11-30
-
2017-09-26
-
2017-09-01
-
2017-07-06
-
2017-01-13
5.1MB
Data Science from Scratch First Principles with Python 无水印pdf
2017-10-03Data Science from Scratch First Principles with Python 英文无水印pdf pdf所有页面使用FoxitReader和PDF-XChangeView
5.6MB
Data-Science-from-Scratch-First-Principles-with-Python.pdf.pdf
2019-09-14Data-Science-from-Scratch-First-Principles-with-Python.pdf
Data.Science.from.Scratch.First.Principles.with.Python下载_course
2020-08-08Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they
25.71MB
数据科学入门中文版 Data Science from Scratch
2018-06-11数据科学是一个蓬勃发展、前途无限的行业,有人将数据科学家称为“21世纪头号性感职业”。本书从零开始讲解数据科学工作,教授数据科学工作所必需的黑客技能,并带领读者熟悉数据科学的核心知识——数学和统计学。
2.77MB
Data Science from Scratch with Python
2018-10-02Are you thinking of learning data science from scratch using Python? (For Beginners) If you are look
76.30MB
数据科学入门(Data Science from Scratch 中文版).pdf
2017-12-07数据科学入门_P286_2016.03.pdf .Data.Science.from.Scratch.First.Principles.with.Python.2015 中文版
4.64MB
Data Science from Scratch First Principles with Python
2019-04-28数据科学入门,第二版, 介绍数据科学基本知识的重量级读本,Google数据科学家作品。 数据科学是一个蓬勃发展、前途无限的行业,有人将数据科学家称为“21世纪头号性感职业”。本书从零开始讲解数据科
5.57MB
Data Science from Scratch- First Principles with Python(O'Reilly,2015)
2017-01-13Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they
5.77MB
Data Science from Scratch 原版PDF by Grus
2018-05-05Data scientist has been called “the sexiest job of the 21st century,” presumably by someone who has
4.67MB
Data Science from Scratch - First Principles with Python.2015
2018-04-30Joel Grus ■■ Get a crash course in Python ■■ Learn the basics of linear algebra, statistics, and pro
Data Science from Scratch First Principles with Python下载_course
2019-09-24Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they
- MySQL 有这一篇就够(呕心狂敲37k字,只为博君一点赞!!!) 60812021-03-03文章目录前言一、SQL简述1.SQL的概述2.SQL的优点3.SQL的分类二、数据库的三大范式三、数据库的数据类型1.整数类型2.浮点数类型和定点数类型九、MySQL数据表简单查询1.简单查询概述2.查询所有字段(方法不唯一只是举例)3.查询指定字段(sid、sname)4.常数的查询5.从查询结果中过滤重复数据6.算术运算符(举例加运算符)十、函数1.聚合函数1.1、count()1.2、max()1.3、min()1.4、sum()1.5、avg()2.其他常用函数2.1、时间函数2.2、字符串函数2.
Python初级入门精讲
2017-11-22本课程为Python全栈开发初级入门篇-语言基础章节,学习完本篇章可对python语言有初步的掌握与理解,本课程侧重于初级学员,课程内容详细有针对性,务求各种类型的学员都可以掌握python开发。
1.64MB
算法设计与分析-张德富-答案全
2018-12-12算法设计与分析-张德富-完整版本答案。 此版本答案诗最全的。很详细。 pdf后面带课件
零基础Python数据分析特训营-直播回放
2020-07-07作为投资者,我们常听到的一句话是“不要把鸡蛋放入同一个篮子,可见分散投资可以降低风险,但如何选择不同的篮子、便是见仁见智的事情了,数据分析就是解决这些问题的一工具。在本次数据分析训练营分为四天,前 2天为 Python 编码技术部分,可以帮助学习者快速上手Python数据处理;后2天为数据分析部分,借助通联数据平台的策略建立,实现实际项目结合,将各种策略代码直接开源,并且对各种策略进行了介绍与点评,通过数据分析支撑决策,可谓本次训练营的精华部分。
手把手带你学Python
2020-03-03当下最火的计算机语言,难道你还只停留知道的阶段吗?快跟着老司机一起起飞吧~ 零基础开始学,只要跟着视频一步一步来,多思考,多练习,我相信你会有质的飞越。 学习路上会很苦,也会很累。但是这些等你学会以后,会发现这些都是值得。 还在等什么?快来学习吧~
70.77MB
个人简历模板
2018-12-12优质简历模板,目前最前全的模板收藏,需要换工作的小伙伴们可以试试
16.68MB
Visual c++ 2010 Express(中文版)
2018-11-20Visual c++ 2010 Express(中文版)安装包及其安装视频,从2018年3月开始,全国二级C语言平台更改为VC++2010 Express版本,请安装新环境,注册方法:从 Visual
28KB
各显卡算力对照表!
2018-01-11挖矿必备算力对照!看看你的机器是否达到标准!看完自己想想办法刷机!
- 实时 摔倒识别 /运动分析/打架等异常行为识别/控制手势识别等所有行为识别全家桶 原理 + 代码 + 数据+ 模型 开源! 45962021-03-02文章目录一、 基本过程和思想二 、视频理解还有哪些优秀框架三、效果体验~使用手势:python run_gesture_recognition.py健身_跟踪器:卡路里计算三、训练自己数据集步骤然后,打开这个网址:点击一下start new project但是官方的制作方法是有着严重bug的~我们该怎么做呢!原代码解读 大家好,我是cv君,很多大创,比赛,项目,工程,科研,学术的炼丹术士问我上述这些识别,该怎么做,怎么选择框架,今天可以和大家分析一下一些方案: 用单帧目标检测做的话,前后语义相关性很差(也有
Javascript前端开发
2018-03-14JavaScript一种直译式脚本语言,是一种动态类型、弱类型、基于原型的语言,内置支持类型。它的解释器被称为JavaScript引擎,为浏览器的一部分,广泛用于客户端的脚本语言,早是在HTML(标准通用标记语言下的一个应用)网页上使用,用来给HTML网页增加动态功能。
7.22MB
《实变函数与泛函分析》答案
2018-07-05郑维行版本 希望能有所帮助 《实变函数与泛函分析》课后答案
电商网站高并发秒杀实战
2018-12-26这是一个电商平台的项目实战案例,基于双11抢购活动真实需求设计,从需求分析到框架设计,从用户登录到抢购商品、完成支付等,这其中涉及千万级用户如何实现有序队列、如何进行高并发测试、用户唯一性判断等,该案例用细腻、详实的讲解,手把手教你完成全项目开发。
57.18MB
apache-jmeter-5.1.1(Requires Java 8+).zip
2019-08-01。Apache JMeter 5.1.1 (Requires Java 8+),需要jdk8以上的版本。
-
博客
字节笔试-老c和小m之间的放书矛盾(最佳解法:并查集)
字节笔试-老c和小m之间的放书矛盾(最佳解法:并查集)
-
博客
PHP中的button的使用
PHP中的button的使用
-
博客
MySQL explain执行计划解读
MySQL explain执行计划解读
-
学院
python自动化操作word
python自动化操作word
-
下载
bowerjs.zip
bowerjs.zip
-
博客
高级组件
高级组件
-
学院
stm32+4G从零开始连接阿里云IOT
stm32+4G从零开始连接阿里云IOT
-
博客
23.所有权.rs
23.所有权.rs
-
学院
SpringBoot2集成Quartz+Vue动态定时任务(前后分离)
SpringBoot2集成Quartz+Vue动态定时任务(前后分离)
-
下载
资料.rar redis java jar包 window下redis软件
资料.rar redis java jar包 window下redis软件
-
下载
2020-2025年中国自动化组装设备行业发展趋势预测与发展战略咨询报告.pdf
2020-2025年中国自动化组装设备行业发展趋势预测与发展战略咨询报告.pdf
-
下载
my-terrarium:简单的拖放冥想-源码
my-terrarium:简单的拖放冥想-源码
-
博客
android 去掉USB权限弹窗
android 去掉USB权限弹窗
-
学院
基于微信的同城小程序、校园二手交易小程序 毕业设计毕设源码使用教程
基于微信的同城小程序、校园二手交易小程序 毕业设计毕设源码使用教程
-
下载
艾宾浩斯遗忘曲线复习计划表.xls
艾宾浩斯遗忘曲线复习计划表.xls
-
学院
CCNA_CCNP 思科网络认证 《 广域网 帧中继和永久虚电路 》
CCNA_CCNP 思科网络认证 《 广域网 帧中继和永久虚电路 》
-
博客
Docker 搭建MySQL PXC集群(你还不知道吗,快来看看吧)
Docker 搭建MySQL PXC集群(你还不知道吗,快来看看吧)
-
博客
Unity3D中在Game视图调整屏幕大小,回到Scen视图发现游戏界面被改变了(解决方案)
Unity3D中在Game视图调整屏幕大小,回到Scen视图发现游戏界面被改变了(解决方案)
-
下载
rslang-data-源码
rslang-data-源码
-
下载
moment-guess:一个用于猜测日期格式的实用程序包-源码
moment-guess:一个用于猜测日期格式的实用程序包-源码
-
下载
Sona-源码
Sona-源码
-
下载
NDP461-KB3102436-x86-x64-AllOS-ENU.rar
NDP461-KB3102436-x86-x64-AllOS-ENU.rar
-
下载
双速率Hammerstein系统的最大似然估计方法
双速率Hammerstein系统的最大似然估计方法
-
学院
CCNA_CCNP 思科网络认证 《 综合案例设计_配置高可用企业网络
CCNA_CCNP 思科网络认证 《 综合案例设计_配置高可用企业网络
-
学院
Cocos Creator游戏开发-疯狂弹球 视频教程
Cocos Creator游戏开发-疯狂弹球 视频教程
-
下载
Sudoku-Solver-AI:我使用相机制作了一个实时数独解算器,它在框架中寻找数独的边缘,提取,解算并将解法覆盖在拼图本身上。 为了进行数字识别,我使用了CNN,并使用Keras对其进行了训练,并使用了来自不同ubuntu字体的印刷字符。 对于图像处理部分,我使用OpenCV进行边缘检测-源码
Sudoku-Solver-AI:我使用相机制作了一个实时数独解算器,它在框架中寻找数独的边缘,提取,解算并将解法覆盖在拼图本身上。 为了进行数字识别,我使用了CNN,并使用Keras对其进行了训练,并使用了来自不同ubuntu字体的印刷字符。 对于图像处理部分,我使用OpenCV进行边缘检测-源码
-
学院
Unity RUST 逆向安全开发
Unity RUST 逆向安全开发
-
学院
VMware vSphere ESXi 7 精讲/VCSA/VSAN
VMware vSphere ESXi 7 精讲/VCSA/VSAN
-
下载
jamstack-ex4:Next.js SSG + Github Action示例,读取json文件-源码
jamstack-ex4:Next.js SSG + Github Action示例,读取json文件-源码
-
博客
elementUI 组件兼容移动端(媒体查询)
elementUI 组件兼容移动端(媒体查询)