下载  >  开发技术  >  其它  > Introduction.to.Machine.Learning.3rd.Edition

Introduction.to.Machine.Learning.3rd.Edition 评分

Title: Introduction to Machine Learning, 3rd Edition Author: Ethem Alpaydin Length: 640 pages Edition: 3rd Language: English Publisher: The MIT Press Publication Date: 2014-08-22 ISBN-10: 0262028182 ISBN-13: 9780262028189 The goal of machine learning is to program computers to use example data or p
Introduction to Machine earning Third Edition Adaptive Computation and Machine learning Thomas Dietterich, editor Christopher Bishop, David Heckerman, Michael Jordan, and michael Kearns, associate editors A complete list of books published in The Adaptive Computation and Machine learning series appears at the back of this book Introduction to Machine Learning Third edition Ethem alpaydin The mit Press Cambridge, massachusetts London, england c 2014 Massachusetts Institute of technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording or informa tion storage and retrieval) without permission in writing from the publisher For information about special quantity discounts, please email special_sales@mitpress. mit.edu Typeset in 10/13 Lucida bright by the author using ITEX 28 Printed and bound in the united states of america Library of Congress Cataloging-in-Publication Information Alpaydin, Ethem Introduction to machine learning / Ethem Alpaydin--3rd ed p. Cm. Includes bibliographical references and index isBn 978-0-262-02818-9(hardcover: alk. paper) 1. Machine learning. I. Title Q325.5.A462014 006.3’1-dc23 2014007214 10987654321 Contents 5.11 References 113 6 Dimensionality reduction 115 6.1 Introduction 115 6.2 Subset selection 116 6.3 Principal Component Analysis 120 6.4 Feature Embedding 127 6.5 Factor Analy 6.6 Singular value Decomposition and matrix Factorization 135 6.7 Multidimensional Scaling 136 6.8 Linear Discriminant Analysis 140 6.9 Canonical Correlation Analysis 145 6.10 Isomap 148 6.11 Locally linear embedding 150 6.12 Laplacian Eigenmaps 153 6.13 Notes 155 6.14 Exercises 157 6.15 References 158 7 Clustering 161 7.1 Introduction 161 7.2 Mixture densities 162 7.3 k-Means Clustering 163 7.4 Expectation-Maximization Algorithm 167 7.5 Mixtures of latent variable models 172 7.6 Supervised Learning after clustering 173 7.7 Spectral Clustering 175 7. 8 Hierarchical Clustering 176 7.9 Choosing the Number of Clusters 178 7.10 Notes 179 7.11 Exercises 180 7.12 References 182 8 Nonparametric Methods 185 8.1 Introduction 185 8.2 Nonparametric Density Estimation 186 8.2.1 Histogram Estimator 187 8.2.2 Kernel estimator 188 8.2.3 k-Nearest Neighbor Estimator 190 8.3 Generalization to multivariate Data 192 Brief contents 1 Introduction 1 2 Supervised learning 21 3 Bayesian Decision Theory 49 4 Parametric Methods 65 5 Multivariate Methods 93 6 Dimensionality reduction 15 7 Clusteri 161 8 Nonparametric Methods 185 9 Decision trees 213 1 0 Linear Discrimination 239 11 Multilayer Perceptrons 267 12 Local models 317 1 3 Kernel machines 349 14 Graphical models 387 15 Hidden markov Models 417 16 Bayesian Estimation 445 17 Combining Multiple learners 487 18 Reinforcement Learning 517 19 Design and Analysis of machine learning Experiments 547 a Probability 593

...展开详情
所需积分/C币:50 上传时间:2015-02-09 资源大小:7.4MB
举报 举报 收藏 收藏 (10)
分享 分享

评论 下载该资源后可以进行评论 48

airyfish 还没有来得及看
2019-02-28
回复
fishermandong 好书,虽然还没看完。
2018-07-19
回复
qq76536257 还不错,就是有缺页~
2018-03-21
回复
gear_second 凑合看吧。擦。
2018-01-25
回复
u011469392 谢谢了,资源不错。
2017-09-26
回复
Introduction to machine learning

Ethem Alpaydin的 Introduction to machine learning, 对比好几个版本,很多都缺页,或者顺序不对(主要是目录部分),重新做了一版比较满意的(第9页为扫描)

立即下载
introduction to machine learning

本书主要介绍及其学习的常见算法,以及数学基础,对于想入门机器学习的新手来说,值得一看。

立即下载
Introduction to Machine Learning, third edition

Introduction to Machine Learning, third edition Ethem ALPAYDIN The MIT Press September 2014: ISBN: 978-0-262-028189 pdf

立即下载
Reinforcement learning合集

this file contains:Advanced Deep Learning with Keras_ Apply deep learning techniques, autoencoders, GANs, variational autoencoders, deep reinforcement learning, policy gradients, and more (2018, Packt Publishing.pdf Deep Reinforcement Learning for Wireless Networks (2019, Springer International

立即下载
Introduction to Machine Learning (Ethem Alpaydin,third Edition)

Introduction to Machine Learning third Edition (Adaptive Computation and Machine Learning series) 机器学习的经典教材,2014年的第三版。 作者为MIT的Ethem Alpaydin。 1) PDF版本。 2) 带书签和目录,方便电子书阅读。

立即下载
Introduction to Machine Learning (Ethem Alpaydin) 3rd (MIT 2014).pdf

Introduction to Machine Learning (Ethem Alpaydin) 3rd (MIT 2014).pdf

立即下载
Reinforcement Learning an Introduction,2018正式版(第二版)

RL经典教学书籍,2018年最新版本(最终印刷出版版本),是想学习强化学习入门的必备资料!

立即下载
An Introduction to Machine Learning(2nd) 无水印原版pdf

An Introduction to Machine Learning(2nd) 英文无水印原版pdf 第2版 pdf所有页面使用FoxitReader、PDF-XChangeViewer、SumatraPDF和Firefox测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 查看此书详细信息请在美国亚马逊官网搜索此书

立即下载
Reinforcement Learning.pdf

掌握强化学习,这是机器学习的一个热门领域,从基础知识开始:发现代理和环境是如何演变的,然后清楚地了解它们是如何相互关联的。然后,您将使用与强化学习相关的理论,并看到构建强化学习过程的概念。 强化学习讨论了强化学习的重要算法实现,包括马尔可夫决策过程和半马尔可夫决策过程。下一节将向您展示如何在查看开放式人工智能健身房之前开始使用开放式人工智能。然后,您将从增强学习的角度了解使用python的群智能。 本书的最后一部分从TensorFlow环境开始,概述了如何将强化学习应用于TensorFlow。还有关于KERA的报道,这是一个可用于强化学习的框

立即下载