没有合适的资源?快使用搜索试试~ 我知道了~
线检测算法
资源推荐
资源详情
资源评论
Published in Image Processing On Line on 2012–03–24.
Submitted on 2012–00–00, accepted on 2012–00–00.
ISSN 2105–1232
c
© 2012 IPOL & the authors CC–BY–NC–SA
This article is available online with supple mentary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2012.gjmr-lsd
2015/06/16 v0.5.1 IPOL article class
LSD: a Line Segment Detector
R G G
1
, J´´ J
2
, J-M M
3
,
G R
4
1
CMLA, ENS Cachan, France (grompone@cmla.en s-cachan.fr)
2
TELECOM ParisTech, France (jakubowi@telecom-paristech. fr)
3
CMLA, ENS Cachan, France (morel@cmla.ens-c achan.fr)
4
IIE, UdelaR, Uruguay (r andall@fing.edu.uy)
Communicated by Lionel Moisan Demo edited by Rafael Grompone
Abstract
LSD is a linear-time Line Segment Detector giving subpixel accurate results. It is designed
to work on any digital image wit hout parameter tuning. It controls its own number of false
detections: on average, one false alarm is allowed per image [
1]. The met hod is based on Burns,
Hanson, and Riseman’s method [2], and uses an a contrario validation approach according to
Desolneux, Moisan, and Morel’s theory [3, 4]. The version described here includes some further
improvement over the one described in our original article [1].
Source C ode
The ANSI C implementation of LSD version 1.6 is the one which has been peer reviewed and
accepted by IPOL. The sou rce code, the code documentation, and the online demo are accessible
at the IPOL web page of this article
1
.
Supplementary Material
Also available at the IPOL web page of this article
2
are two older implementations of LSD,
versions 1.0 and 1.5, as well as an example of applying LSD, frame by fr ame, to a vide o.
The version 1.0 of LSD code corresponds better to the algorithm described in our original
article [1], and does not include the further improvements de scribed he re and included in the
current version; they can be compiled, both, as a C language program or usin g the Megawave2
3
framework. Versions 1.0 and 1.5 of the code are non revie wed material.
Keywords: line segment detection, a contrario method
Rafael Grompone von Gioi, J
´
er
´
emie Jakubowicz, Jean-Michel Morel, Gregory Ran dall, LSD: a Line Segment D etector, Image
Processing On Line, 2 (2012), pp. 35–55. https:/ /doi.org/10.5201/ip ol.2012.gjmr-lsd
Rafael Grompone von Gioi, J
´
er
´
emie Jakubowicz, Jean-Michel More l, Gregory Randall
F 1: I -.
1 Introduction
LSD . T line segments.
C
. T, -
1.
T - level-line eld,
..,
. T, -
τ . T line support regions, 2.
Image Level-line Field Line Support Regions
F 2: L S R.
E line support region ( ) line segment. T
( ) . T
line su pport region ;
, 3 .
E . T -
τ align ed points,
4. T , n, aligned points, k,
line segment.
T a contrario H
D, M, M [3, 4]. T - H (
) . A, a contrario
1
https://doi.org/ 10.5201/ipol.201 2.gjmr-lsd
2
https://doi.org/ 10.5201/ipol.201 2.gjmr-lsd
3
http://megawave. cmla.ens-cachan.fr/
36
LSD: a Line Segment Detector
F 3: R .
2τ
8 aligned points
F 4: A .
noise a contrario H
0
. T,
a contrario
. I , a contrario .
I line segments, aligned points. W
line segment a contrario ,
line segment. G i r, k(r, i) aligned
points n(r) r. T,
N
test
· P
H
0
[k(r, I) ≥ k(r, i)] (1)
number of te sts N
test
, P
H
0
a contrario H
0
( ), I
H
0
. T H
0
k(r, I),
- I. T H
0
.
N k(r, I) I level-line
eld H
0
. N, k(r, I)
.
T a contrario H
0
line segment
level-line eld :
• LLA(j)
j∈P ixels
• LLA(j) [0, 2π]
37
Rafael Grompone von Gioi, J
´
er
´
emie Jakubowicz, Jean-Michel More l, Gregory Randall
LLA(j) - j. U H
0
,
a contrario aligned point
p =
τ
π
, LLA(j), k(r, I)
. T, P
H
0
[k(r, I) ≥ k(r, i)]
P
H
0
k(r, I) ≥ k(r, i)
= B
n(r), k(r, i) , p
B(n, k, p) :
B(n, k, p) =
n
∑
j=k
n
j
p
j
(1 − p)
n−j
T number of tests N
test
. N oriented,
: line segment . T,
A B B A.
T . I N × M
NM × NM . A,
√
NM
. S 5.
NM width values
N x M options
M
N
N x M options
F 5: E .
T
(NM )
5/2
T precision p τ π;
; 2.9. W γ p
. E p . T, number of tes ts
(NM )
5/2
γ
F, N F A (NFA) r i
NFA(r, i) = (N M )
5/2
γ · B
n(r), k(r, i) , p
38
LSD: a Line Segment Detector
T aligned
points r H
0
. W NFA ,
a contrario , ..,
. O , NFA ,
. A ε NFA(r, i) ≤ ε ε-meaningful
rectangle .
Theorem 1
E
H
0
∑
r∈R
1
NFA(r,I)<ε
≤ ε
where E is the expectation operator, 1 is the indicator function, R is the set of rectangles considered,
and I is a random image on H
0
.
T ε-meaningful rectangles a con trario
H
0
ε. T, ε
. I , LSD H .
T [1].
Proof W
ˆ
k(r)
ˆ
k(r) =
{
κ N, P
H
0
k(r, I) ≥ κ
≤
ε
(NM )
5/2
γ
}
T, NFA(r, i) ≤ ε k(r, i) ≥
ˆ
k(r). N,
E
H
0
∑
r ∈R
1
NFA(r,I)≤ε
=
∑
r ∈R
P
H
0
NFA(r, I) ≤ ε
=
∑
r∈R
P
H
0
[
k(r, I) ≥
ˆ
k(r)
]
B,
ˆ
k(r)
P
H
0
[
k(r, I) ≥
ˆ
k(r)
]
≤
ε
(NM )
5/2
γ
#R = (N M )
5/2
γ
E
H
0
∑
r ∈R
1
NFA(r,I)≤ε
≤
∑
r ∈R
ε
(NM )
5/2
γ
= ε
.
F D, M, M [3, 4], ε = 1 . T
a contrario , .
A, ε. I, (
ε-meaningful rectangle)
√
− ε.
S ε .
39
剩余20页未读,继续阅读
资源评论
柠檬0711
- 粉丝: 54
- 资源: 9
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功