S. J. Wright Numerical Optimization(second edition).pdf

-
This is a book for people interested in solving optimization problems. Because of the wide (and growing) use of optimization in science, engineering, economics, and industry, it is essential for students and practitioners alike to develop an understanding of optimization algorithms. Knowledge of the
To Sue. isabel and martin and To Mum and dad Contents Preface Preface to the Second edition XXI 1 Introduction Mathematical Formulation Example: A Transportation Problem Continuous versus Discrete Optimization Constrained and Unconstrained optimization Global and Local optimization Stochastic and Deterministic Optimization Convexity 245667789 Optimization algorithms Notes and References 2 Fundamentals of Unconstrained optimization 2.1 What is a solution viII ContentS Recognizing a local minimum 14 Nonsmooth problems 17 2.2 Overview of algorithms 18 Two Strategies: Line Search and Trust Region 19 Search directions for line search methods Models for Trust-Region Methods 25 g 26 Exercises 27 3 Line search Methods 30 Step length 31 The Wolfe Conditions The Goldstein Conditions 36 Sufficient Decrease and Backtracking 3.2 Convergence of Line Search Methods 37 3.3 Rate of Convergence 41 Convergence Rate of Steepest Descent Newtons Method Quasi-Newton Methods 3. 4 Newton's Method with Hessian modification Eigenvalue Modification 49 Adding a Multiple of the Identity 51 Modified Cholesky factorization Modified Symmetric Indefinite Factorization 54 3.5 Step-Length Selection Algorithms Interpolatio Initial Step Length A Line Search Algorithm for the wolfe Conditions 60 Notes and References 62 Exercises 4 Trust-Region Method Outline of the trust-Region approach 4.1 Algorithms Based on the Cauchy point 71 The Cauchy Point Improving on the cauchy point The dogleg method Two-Dimensional Subspace minimization 4.2 Global Convergence Reduction Obtained by the Cauchy Point Convergence to Stationary Points 4.3 Iterative Solution of the Subproblem 83 CONTENTs ix The Hard Case 87 Proof of Theorem 4.1 89 Convergence of algorithms Based on Nearly Exact Solutions 4.4 Local Convergence of Trust-Region Newton Methods 4.5 Other Enhancements Scaling Trust Regions in Other norms Notes and References 55788 Exercises 5 Conjugate Gradient Methods 101 5.1 The Linear Conjugate gradient Method Conjugate Direction Methods 102 Basic Properties of the conjugate gradient method 107 A Practical Form of the Conjugate Gradient Method 111 Rate of convergence 2 Preconditioning Practical Preconditioners 120 5.2 Nonlinear Conjugate Gradient Methods 121 The fletcher-Reeves method 121 The polak-Ribiere Method and variants 122 Quadratic Termination and Restarts 124 Behavior of the fletcher-Reeves method 125 Global Convergence 127 Numerical performance 131 otes and references 132 Exercises 133 6 Quasi-Newton Methods 135 6.1 The bfgs method 136 Properties of the BFGS Method 141 Implementation 142 6.2 The Srl Method 144 Properties of SRl Updating 147 6.3 The broyden Cl 149 6.4 Convergence analysis 153 Global Convergence of the bFgs Method 153 Superlinear Convergence of the BFGS Method 156 Convergence analysis of the srl Method 160 Notes and References 161 Exercises .162 X CONTENTS 7 Large-Scale Unconstrained Optimization 164 7.1 Inexact Newton Methods 165 Local Convergence of Inexact Newton Methods 166 Line search Newton -CG Method 168 Trust-Region Newton-CG Method 170 Preconditioning the Trust-Region Newton-CG Method 174 Trust-Region Newton-Lanczos Method 175 7.2 Limited-Memory Quasi-Newton Methods 176 Limited-Memory BFgs 177 Relationship with Conjugate Gradient Methods 180 General Limited-Memory Updating 181 Compact Representation of BFGs updating 181 Unrolling the Update 184 7.3S parse Quasi-Newton Updates 185 7.4 Algorithms for Partially Separable Functions 186 7.5 Perspectives and Software 189 Notes and References 190 Exercises 191 8 Calculating Derivatives 193 8. 1 Finite-Difference Derivative approximations 194 pproximating the gradient 195 Approximating a Sparse Jacobian 197 pp ting the e Hessian 201 Approximating a Sparse Hessian 202 8.2 Automatic Differentiation 204 Ane 205 The Forward Mode 206 The Reverse Mode 207 Vector Functions and Partial Separability 210 Calculating jacobians of Vector Functions 212 Calculating Hessians: Forward Mode 213 Calculating Hessians: Reverse Mode 215 Current limitations 216 Notes and references 217 Exercises 217 9 Derivative-Free Optimization 220 9.1 Finite Differences and nois 221 9.2 Model-Based Methods 223 Interpolation and polynomial bases 226 Updating the Interpolation Set 227 CONTENTS xi A Method Based on Minimum-Change Updating 228 9.3 Coordinate and Pattern -Search Methods 229 Coordinate Search Method 230 Pattern-Search Methods 231 9. 4 A Conjugate-Direction Method 234 9.5 Nelder-Mead Method 238 9.6 Implicit Filtering 240 Notes and references 242 Exercises 242 10 Least-Squares Problems 245 10.1 Backs 247 10.2 Linear Least-Squares Problems 250 10.3 Algorithms for Nonlinear Least-Squares Problems 254 The gauss-Newton method 254 Convergence of the gauss-Newton Method 255 The Levenberg-Marquardt Method 258 Implementation of the Levenberg-Marquardt method 259 Convergence of the Levenberg-Marquardt Method 261 Methods for Large-Residual Problems 262 10.4 Orthogonal Distance Regression 265 Notes and References 267 Exercises 269 11 Nonlinear equations 270 11.1 Local algorithms 274 Newtons Method for Nonlinear Equations 274 Inexact Newton methods 277 Broyden's method 279 Tensor Methods 283 11.2 Practical methods 285 Merit functions 285 Line search methods 287 Trust-Region Methods 290 11.3 Continuation/Homotopy method 296 Motivation 296 Practical Continuation methods 297 Motes and reference 302 Exercises 302 12 Theory of Constrained Optimization 304 Local and global solutions 305 xii Contents Smoothness 306 12. 1 Examples 307 A Single equality Constraint 308 A Single inequality constraint 310 Two Inequality constraints 313 12.2 Tangent Cone and constraint qualifications 315 12.3 First-Order Optimality Conditions 320 12.4 First-Order optimality conditions: Proof 323 Relating the Tangent Cone and the First-Order Feasible Direction Set 323 A Fundamental Necessary Condition 325 Farkas lemma 326 Proof of theorem 12.1 329 12.5 Second-Order Conditions 330 Second-Order Conditions and Projected Hessians 337 12.6 Other Constraint Qualifications 338 12.7 A Geometric Viewpoint 340 12.8 Lagrange Multipliers and Sensitivity 341 12.9 Duality 343 Notes and References 349 Exercises 351 13 Linear Programming: The Simplex method 355 Linear Programming 356 13.1O1 ptimality and duality 358 Optimality conditions 358 The Dual Problem 359 3.2 Geometry of the Feasible Set 362 Bases and Basic Feasible points 362 Vertices of the Feasible Polytope 365 13. 3 The Simplex method 366 Outline 366 A Single Step of the Method 370 13.4 Linear Algebra in the simplex method 372 13.5 Other Important Details 375 Pricing and Selection of the Entering Index 375 Starting the Simplex method 378 Degenerate Steps and Cycling 381 13.6 The Dual Simplex Method 382 13.7 Presolving 385 13.8 Where Does the Simplex method Fit 388 Notes and References 389 Exercises 389 CONTENTs xiii 14 Linear Programming: Interior-Point Methods 392 14.1 Primal-Dual Methods 393 Outline 393 The Central path 397 Central Path Neighborhoods and Path-Following Methods 399 14.2 Practical Primal-Dual Algorithms 407 Corrector and Centering Steps 407 Step lengths 409 Starting pe 410 A Practical Algorithm 411 Solving the linear systems 411 14. 3 Other Primal-Dual Algorithms and Extensions 413 Other Path-Following methods 413 Potential-Reduction Methods 414 Extensions 415 14.4 Perspectives and Software 416 Notes and References 417 Exercises 418 15 Fundamentals of Algorithms for Nonlinear Constrained Optimization 421 15.1 Categorizing Optimization Algorithms 422 15.2 The Combinatorial Difficulty of Inequality-Constrained Problems 424 15.3 Elimination of variables 426 Simple elimination using Linear Constraints 428 General Reduction Strategies for Linear Constraints .......... 431 Effect of Inequality Constraints 434 15.4 Merit Functions and Filters 435 Merit functions 435 Filters 437 15.5 The Maratos Effect 440 15.6 Second-Order Correction and nonmonotone Techniques 443 nonmonotone(Watchdog) Strategy 444 Notes and references 446 Exercises 446 16 Quadratic Programming 448 16.1 Equality-Constrained Quadratic Programs 451 Properties of Equality-Constrained QPs 451 16.2 Direct Solution of the Kkt System 454 Factoring the Full KKT System 454 Schur-Complement Method 455 Null-Space Method 457

4.17MB
数值最优化 Numerical Optimization 第二版.pdf
2012-03-07数值最优化 Numerical Optimization 第二版.pdf This is a book for people interested in solving optimization pr
3.30MB
Numerical Optimization.pdf
2020-04-19非线性优化方法,包括牛顿梯度法、共轭梯度法、准牛顿梯度法等相关算法,求解各种非凸目标非凸限制等优化问题,对于从事优化领域的学者、老师来说,非常有帮助。
4.18MB
numerical optimization 数值最优化 Nocedal & Wright.pdf
2017-10-05numerical optimization 数值最优化 第二版 2006,Nocedal
数值最优化,numerical Optimization下载_course
2020-03-27经典最优化研究生课本,英文版,PDF格式 相关下载链接://download.csdn.net/download/imperman/1838994?utm_source=bbsseo
4.45MB
Numerical Optimization (Second Edition)
2017-08-25Numerical Optimization (Second Edition)
4.74MB
Numerical-Optimization 数值优化 第2版
2018-06-23Numerical-Optimization 数值优化 第2版 高清版 pdf 电子书 带目录
5.28MB
Numerical Optimization
2015-06-25本书是数值最优化的权威著作,英文原版pdf格式
3.11MB
Numerical_Optimization.pdf
2017-02-18Numerical_Optimization.pdf
4.17MB
Numerical Optimization 2ed - Nocedal.pdf
2010-04-14Jorge Nocedal Stephen J. Wright Numerical Optimization Second Edition Preface xvii Preface to the Se
3.81MB
Numerical Optimization_数值最优化 第二版
2017-09-16Numerical Optimization_数值最优化;Numerical Optimization_数值最优化;Numerical Optimization_数值最优化
4.17MB
Numerical Optimization 2nd Edition (Jorge Nocedal, Stephen J. Wright)
2014-11-03经典教材,出自于两位大牛。高清第二版! 非扫描版
4.45MB
numerical optimization
2017-10-30Optimization is an important tool used in decision science and for the analysis of physical systems
2.16MB
《科研伦理与学术规范》期末考试文档1(50题)
2021-01-06粉丝下载免费,为了方便小伙伴们学习《科研伦理与学术规范》,希望能帮助到大家,特此分享出来,有需要的可以进行下载。
Linux系统编程:入门篇视频教程
2018-10-16Linux系统编程视频课程为《Linux系统编程》入门篇,主要针对零基础的Linux开发学员科普Linux系统编程的概念以及需要掌握的各种技能,掌握Linux命令编写、Linux学习路线并熟悉嵌入式设备编程的方法。为后续的Linux系统编程深入学习打下良好的基础。
64B
python爬虫20个案例
2018-03-25讲诉python爬虫的20个案例 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
程序员的数学:微积分
2019-09-28本课程介绍程序员必备的数学基础内容,在取材上侧重人工智能、数据分析等热门领域
程序员的数学:线性代数
2019-09-26编程的基础是计算机科学,而计算机科学的基础是数学。因此,学习数学有助于巩固编程的基础,写出更健壮的程序。程序员的数学系列课程主要讲解程序员必备的数学知识,借以培养程序员的数学思维。学习者无需精通编程,也无需精通数学。从概率统计、线性代数、微积分、优化理论、随机过程到当前大热的机器学习,讲师幽默风趣,课件精致美观,深入浅出带你重学数学,时间不可重来,知识可以重学!
微信公众平台开发入门
2015-01-06本套课程的设计完全是为初学者量身打造,课程内容由浅入深,课程讲解通俗易懂,代码实现简洁清晰。通过本课程的学习,学员能够入门微信公众平台开发,能够胜任企业级的订阅号、服务号、企业号的应用开发工作。 通过本课程的学习,学员能够对微信公众平台有一个清晰的、系统性的认识。例如,公众号是什么,它有什么特点,它能做什么,怎么开发公众号。 其次,通过本课程的学习,学员能够掌握微信公众平台开发的方法、技术和应用实现。例如,开发者文档怎么看,开发环境怎么搭建,基本的消息交互如何实现,常用的方法技巧有哪些,真实应用怎么开发。
18.78MB
Android开发入门60个小案例+源代码
2013-08-24适合初学者,大量简单小例子,完整源代码。
2.81MB
2019年美赛D题一等奖论文
2020-04-282019年数模美赛D题一等奖论文中文版本与最终版本,这里面卢浮宫的疏散方法可以修改为任意一篇快速疏散论文,搞数模竞赛的同学可以进行下载学习。
-
下载
关于Python tkinter库中filedialog的四个最有用函数(二)
关于Python tkinter库中filedialog的四个最有用函数(二)
-
博客
抖音群控系统的功能有哪些?
抖音群控系统的功能有哪些?
-
学院
python办公自动化技巧
python办公自动化技巧
-
博客
优先队列(堆)问题 A: 最小函数值(minval)
优先队列(堆)问题 A: 最小函数值(minval)
-
下载
C语言#define拼接宏定义实现方式
C语言#define拼接宏定义实现方式
-
博客
集成Google登录并获取个人性别等信息
集成Google登录并获取个人性别等信息
-
下载
Asp.Net之后台加载JS和CSS
Asp.Net之后台加载JS和CSS
-
下载
vs200836051.rar
vs200836051.rar
-
学院
Java仿微博系统实战-架构1.0(Spring Boot2.X)
Java仿微博系统实战-架构1.0(Spring Boot2.X)
-
博客
zookeeper内部原理
zookeeper内部原理
-
学院
python数据分析基础
python数据分析基础
-
学院
uni-app实战专题
uni-app实战专题
-
下载
labelme:缺少生成”info.yaml”文件
labelme:缺少生成”info.yaml”文件
-
博客
centos8 配置Apache2.4.37,php5.3.13, mysql
centos8 配置Apache2.4.37,php5.3.13, mysql
-
学院
计算机网络基础
计算机网络基础
-
博客
springboot整合springcloud
springboot整合springcloud
-
学院
Kotlin协程极简入门与解密
Kotlin协程极简入门与解密
-
学院
大数据Hive on MR/TEZ与hadoop的整合应用
大数据Hive on MR/TEZ与hadoop的整合应用
-
下载
C++解决基本的迷宫问题
C++解决基本的迷宫问题
-
博客
代理IP最新的使用方式
代理IP最新的使用方式
-
下载
C++实现图书管理系统
C++实现图书管理系统
-
下载
程序员,不止干到35岁
程序员,不止干到35岁
-
学院
hadoop自动化运维工具Ambari应用实践
hadoop自动化运维工具Ambari应用实践
-
下载
上海电信郊区宽带IP网络优化探讨
上海电信郊区宽带IP网络优化探讨
-
下载
爬取钉钉在B站卑微道歉视频弹幕,做成词云
爬取钉钉在B站卑微道歉视频弹幕,做成词云
-
博客
TensorFlow学习笔记之一些低阶API
TensorFlow学习笔记之一些低阶API
-
下载
C#访问远程主机资源的方法
C#访问远程主机资源的方法
-
下载
五子棋(Java语言实现)
五子棋(Java语言实现)
-
学院
阿里云云计算ACP考试必备教程
阿里云云计算ACP考试必备教程
-
博客
import coverage ModuleNotFoundError: No module named ‘coverage‘
import coverage ModuleNotFoundError: No module named ‘coverage‘