# pip install openpyxl -i https://pypi.tuna.tsinghua.edu.cn/simple/
import numpy as np
import pandas as pd
from tqdm import tqdm
import torch
from torch import nn
import torch.utils.data as data
import torch.nn.functional as F
from torch import tensor
import torch.utils.data as Data
import math
from matplotlib import pyplot
from datetime import datetime, timedelta
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import math
import warnings
warnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
data = pd.read_csv("Test_Data.csv") # 1 3 7 是 预测列
data.dropna(axis=0, how='any')
# data = data.fillna(0)
# print(data.head())
# print(data.columns)
data_x = data[
['2#泵排出压力(bar)', '吸入真空(bar)', '管路平均浓度(%)', '横移速度(m/min)','绞刀电机电流(A)', '管路流速(m/s)']].values
# print(len(data_y))
# 四个数据划分为一组 用前三个预测后一个
data_4_x = []
data_4_y = []
for i in range(0, len(data_x) - 10, 10):
data_4_x.append(data_x[i:i +9])
data_4_y.append(data_x[i+9])
print(len(data_4_x), len(data_4_y))
x_train, x_test, y_train, y_test = train_test_split(np.array(data_4_x), np.array(data_4_y), test_size=0.2)
class DataSet(Data.Dataset):
def __init__(self, data_inputs, data_targets):
self.inputs = torch.FloatTensor(data_inputs)
self.label = torch.FloatTensor(data_targets)
def __getitem__(self, index):
return self.inputs[index], self.label[index]
def __len__(self):
return len(self.inputs)
Batch_Size = 32 #
DataSet = DataSet(np.array(x_train), list(y_train))
train_size = int(len(x_train) * 0.8)
test_size = len(y_train) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(DataSet, [train_size, test_size])
TrainDataLoader = Data.DataLoader(train_dataset, batch_size=Batch_Size, shuffle=True, drop_last=True)
TestDataLoader = Data.DataLoader(test_dataset, batch_size=Batch_Size, shuffle=True, drop_last=True)
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
# pe.requires_grad = False
self.register_buffer('pe', pe)
def forward(self, x: torch.Tensor):
chunk = x.chunk(x.size(-1), dim=2)
out = torch.Tensor([]).to(x.device)
for i in range(len(chunk)):
out = torch.cat((out, chunk[i] + self.pe[:chunk[i].size(0), ...]), dim=2)
return out
def transformer_generate_tgt_mask(length, device):
mask = torch.tril(torch.ones(length, length, device=device)) == 1
mask = (
mask.float()
.masked_fill(mask == 0, float("-inf"))
.masked_fill(mask == 1, float(0.0))
)
return mask
class Transformer(nn.Module):
"""标准的Transformer编码器-解码器结构"""
def __init__(self, n_encoder_inputs, n_decoder_inputs, Sequence_length, d_model=512, dropout=0.1, num_layer=8):
"""
初始化
:param n_encoder_inputs: 输入数据的特征维度
:param n_decoder_inputs: 编码器输入的特征维度,其实等于编码器输出的特征维度
:param d_model: 词嵌入特征维度
:param dropout: dropout
:param num_layer: Transformer块的个数
Sequence_length: transformer 输入数据 序列的长度
"""
super(Transformer, self).__init__()
self.input_pos_embedding = torch.nn.Embedding(5000, embedding_dim=d_model)
self.target_pos_embedding = torch.nn.Embedding(5000, embedding_dim=d_model)
encoder_layer = torch.nn.TransformerEncoderLayer(d_model=d_model, nhead=8, dropout=dropout,
dim_feedforward=4 * d_model)
decoder_layer = torch.nn.TransformerDecoderLayer(d_model=d_model, nhead=8, dropout=dropout,
dim_feedforward=4 * d_model)
self.encoder = torch.nn.TransformerEncoder(encoder_layer, num_layers=2)
self.decoder = torch.nn.TransformerDecoder(decoder_layer, num_layers=4)
self.input_projection = torch.nn.Linear(n_encoder_inputs, d_model)
self.output_projection = torch.nn.Linear(n_decoder_inputs, d_model)
self.linear = torch.nn.Linear(d_model, 1)
self.ziji_add_linear = torch.nn.Linear(Sequence_length, 6)
def encode_in(self, src):
src_start = self.input_projection(src).permute(1, 0, 2)
in_sequence_len, batch_size = src_start.size(0), src_start.size(1)
pos_encoder = (torch.arange(0, in_sequence_len, device=src.device).unsqueeze(0).repeat(batch_size, 1))
pos_encoder = self.input_pos_embedding(pos_encoder).permute(1, 0, 2)
src = src_start + pos_encoder
src = self.encoder(src) + src_start
return src
def decode_out(self, tgt, memory):
tgt_start = self.output_projection(tgt).permute(1, 0, 2)
out_sequence_len, batch_size = tgt_start.size(0), tgt_start.size(1)
pos_decoder = (torch.arange(0, out_sequence_len, device=tgt.device).unsqueeze(0).repeat(batch_size, 1))
pos_decoder = self.target_pos_embedding(pos_decoder).permute(1, 0, 2)
tgt = tgt_start + pos_decoder
tgt_mask = transformer_generate_tgt_mask(out_sequence_len, tgt.device)
out = self.decoder(tgt=tgt, memory=memory, tgt_mask=tgt_mask) + tgt_start
out = out.permute(1, 0, 2) # [batch_size, seq_len, d_model]
out = self.linear(out)
return out
def forward(self, src, target_in):
# print("src.shape", src.shape)
src = self.encode_in(src)
# print("src.shape",src.shape)#src.shape torch.Size([9, 8, 512])
out = self.decode_out(tgt=target_in, memory=src)
# print("out.shape",out.shape)
# print("out.shape:",out.shape)# torch.Size([batch, 3, 1]) # 原本代码中的输出
# 上边的这个输入可以用于很多任务的输出 可以根据任务进行自由的变换
# 下面是自己修改的
# 使用全连接变成 [batch,1] 构成了基于transformer的回归单值预测
out = out.squeeze(2)
out = self.ziji_add_linear(out)
return out
model = Transformer(n_encoder_inputs=6, n_decoder_inputs=6, Sequence_length=9).to(device) # 3 表示Sequence_length transformer 输入数据 序列的长度
def _test():
with torch.no_grad():
val_epoch_loss = []
# for i in range(0, len(x_test),batch):# batch是 1 测试用1测试就行
for index, (inputs, targets) in enumerate(TrainDataLoader):
# inputs = x_test[i:i+batch]
# targets = y_test[i:i+batch]
# if len(inputs) == batch: # 最后一个batch可能不足长度 舍弃
inputs = torch.tensor(inputs).to(device)
targets = torch.tensor(targets).to(device)
inputs = inputs.float()
targets = targets.float()
tgt_in = torch.rand((Batch_Size,9,6))
outputs = model(inputs, tgt_in)
loss = criterion(outputs.float(), targets.float())
val_epoch_loss.append(loss.item())
return np.mea

程序员奇奇
- 粉丝: 2w+
- 资源: 297