img
share 分享

利用Python进行数据分析(原书第2版)

作者:Wes McKinney

出版社:机械工业出版社

ISBN:9787111603702

VIP会员免费 (仅需0.8元/天) ¥ 60

温馨提示: 价值40000元的1000本电子书,VIP会员随意看哦!

电子书推荐

更多资源 展开
热门图书

python数据分析随书代码 评分:

python数据分析/(印尼)伊德里斯(Idris.I.)著,韩波译。 资源包括所有章节的示例代码。需要用到python2和pip。 编辑推荐 实用的Python开源模块的大集合; 简单易懂、示例丰富的数据分析教程; 掌握数据可视化、机器学习等高端主题; 新手变身数据分析专家的上好读本; 媒体推荐 本书从一系列开源的Python模块讲起,介绍了很多实用的有关数据检索、清晰、操作、可视化等知识。同时,还涉及信号处理、预测性分析、机器学习等高端主题。非常适合想要深入学习并使用Python进行数据分析的读者,无论是新手还是有一定Python使用基础的读者,都将快速成为一名数据分析专家。 作者简介 Ivan Idris,实验物理学硕士,学位论文侧重于应用计算机科学。毕业后,他曾经效力于多家公司,从事Java开发、数据仓库开发以及QA分析等方面的工作;目前,他的兴趣主要集中在商业智能、大数据和云计算等专业领域。 Ivan Idris以编写简洁可测试的程序代码以及撰写有趣的技术文章为乐,同时也是Packt出版社NumPy Beginner's Guide-Second Edition、NumPy Cookbook和Learning NumPy Array等书籍的作者。读者可以访问ivanidris.net获取更多关于他的信息。 目录 目录 第 1章 Python程序库入门 1 1.1 本书用到的软件 2 1.1.1 软件的安装和设置 2 1.1.2 Windows平台 2 1.1.3 Linux平台 3 1.1.4 Mac OS X平台 4 1.2 从源代码安装NumPy、SciPy、matplotlib和IPython 6 1.3 用setuptools安装 7 1.4 NumPy数组 7 1.5 一个简单的应用 8 1.6 将IPython用作shell 11 1.7 学习手册页 13 1.8 IPython notebook 14 1.9 从何处寻求帮助和参考资料 14 1.10 小结 15 第 2章 NumPy数组 16 2.1 NumPy数组对象 16 2.2 创建多维数组 18 2.3 选择NumPy数组元素 18 2.4 NumPy的数值类型 19 2.4.1 数据类型对象 21 2.4.2 字符码 21 2.4.3 Dtype构造函数 22 2.4.4 dtype属性 23 2.5 一维数组的切片与索引 23 2.6 处理数组形状 24 2.6.1 堆叠数组 27 2.6.2 拆分NumPy数组 30 2.6.3 NumPy数组的属性 33 2.6.4 数组的转换 39 2.7 创建数组的视图和拷贝 40 2.8 花式索引 41 2.9 基于位置列表的索引方法 43 2.10 用布尔型变量索引NumPy数组 44 2.11 NumPy数组的广播 46 2.12 小结 49 第3章 统计学与线性代数 50 3.1 Numpy和Scipy模块 50 3.2 用NumPy进行简单的描述性统计计算 55 3.3 用NumPy进行线性代数运算 57 3.3.1 用NumPy求矩阵的逆 57 3.3.2 用NumPy解线性方程组 59 3.4 用NumPy计算特征值和特征向量 61 3.5 NumPy随机数 63 3.5.1 用二项式分布进行博弈 63 3.5.2 正态分布采样 66 3.5.3 用SciPy进行正态检验 67 3.6 创建掩码式NumPy数组 70 3.7 小结 75 第4章 pandas入门 76 4.1 pandas的安装与概览 77 4.2 pandas数据结构之DataFrame 78 4.3 pandas数据结构之Series 81 4.4 利用pandas查询数据 85 4.5 利用pandas的DataFrame进行统计计算 89 4.6 利用pandas的DataFrame实现数据聚合 91 4.7 DataFrame的串联与附加操作 95 4.8 连接DataFrames 96 4.9 处理缺失数据问题 99 4.10 处理日期数据 102 4.11 数据透视表 106 4.12 访问远程数据 107 4.13 小结 109 第5章 数据的检索、加工与存储 110 5.1 利用NumPy和pandas对CSV文件进行写操作 110 5.2 NumPy.npy与pandas DataFrame 112 5.3 使用PyTables存储数据 115 5.4 Pandas DataFrame与HDF5仓库之间的读写操作 118 5.5 使

...展开详情
上传时间:2018-05 大小:179KB