没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论










1. PageRank 算法概述
PageRank,即网页排名,又称网页级别、Google 左侧排名或佩奇排名。
是 Google 创始人拉里·佩奇和谢尔盖·布林于 1997 年构建早期的搜索系统原型时提出的链接分析算法,自从 Google 在
商业上获得空前的成功后,该算法也成为其他搜索引擎和学术界十分关注的计算模型。目前很多重要的链接分析算法都是在
PageRank 算法基础上衍生出来的。PageRank 是 Google 用于用来标识网页的等级/重要性的一种方法,是 Google 用来衡量
一个网站的好坏的唯一标准。在揉合了诸如 Title 标识和 Keywords 标识等所有其它因素之后,Google 通过 PageRank 来调
整结果,使那些更具“等级/重要性”的网页在搜索结果中另网站排名获得提升,从而提高搜索结果的相关性和质量。其级别从
0 到 10 级,10 级为满分。PR 值越高说明该网页越受欢迎(越重要)。例如:一个 PR 值为 1 的网站表明这个网站不太具有
流行度,而 PR 值为 7 到 10 则表明这个网站非常受欢迎(或者说极其重要)。一般 PR 值达到 4,就算是一个不错的网站了。
Google 把自己的网站的 PR 值定到 10,这说明 Google 这个网站是非常受欢迎的,也可以说这个网站非常重要。
2. 从入链数量到 PageRank
在 PageRank 提出之前,已经有研究者提出利用网页的入链数量来进行链接分析计算,这种入链方法假设一个网页的入
链越多,则该网页越重要。早期的很多搜索引擎也采纳了入链数量作为链接分析方法,对于搜索引擎效果提升也有较明显的
效果。 PageRank 除了考虑到入链数量的影响,还参考了网页质量因素,两者相结合获得了更好的网页重要性评价标准。
对于某个互联网网页 A 来说,该网页 PageRank 的计算基于以下两个基本假设:Î
数量假设:在 Web 图模型中,如果一个页面节点接收到的其他网页指向的入链数量越多,那么这个页面越重要。
质量假设:指向页面 A 的入链质量不同,质量高的页面会通过链接向其他页面传递更多的权重。所以越是质量高的页面
指向页面 A,则页面 A 越重要。
利用以上两个假设,PageRank 算法刚开始赋予每个网页相同的重要性得分,通过迭代递归计算来更新每个页面节点的
PageRank 得分,直到得分稳定为止。 PageRank 计算得出的结果是网页的重要性评价,这和用户输入的查询是没有任何关
系的,即算法是主题无关的。假设有一个搜索引擎,其相似度计算函数不考虑内容相似因素,完全采用 PageRank 来进行排
序,那么这个搜索引擎的表现是什么样子的呢?这个搜索引擎对于任意不同的查询请求,返回的结果都是相同的,即返回
PageRank 值最高的页面。
3. PageRank 算法原理
PageRank 的计算充分利用了两个假设:数量假设和质量假设。步骤如下:
1)在初始阶段:网页通过链接关系构建起 Web 图,每个页面设置相同的 PageRank 值,通过若干轮的计算,会得到每
个页面所获得的最终 PageRank 值。随着每一轮的计算进行,网页当前的 PageRank 值会不断得到更新。
2)在一轮中更新页面 PageRank 得分的计算方法:在一轮更新页面 PageRank 得分的计算中,每个页面将其当前的
PageRank 值平均分配到本页面包含的出链上,这样每个链接即获得了相应的权值。而每个页面将所有指向本页面的入链所

传入的权值求和,即可得到新的 PageRank 得分。当每个页面都获得了更新后的 PageRank 值,就完成了一轮 PageRank 计
算。Î
3.2 基本思想:
如果网页 T 存在一个指向网页 A 的连接,则表明 T 的所有者认为 A 比较重要,从而把 T 的一部分重要性得分赋予 A。这
个重要性得分值为:PR(T)/L(T)
ÎÎÎ 其中 PR(T)为 T 的 PageRank 值,L(T)为 T 的出链数
则 A 的 PageRank 值为一系列类似于 T 的页面重要性得分值的累加。
即一个页面的得票数由所有链向它的页面的重要性来决定,到一个页面的超链接相当于对该页投一票。一个页面的
PageRank 是由所有链向它的页面(链入页面)的重要性经过递归算法得到的。一个有较多链入的页面会有较高的等级,相
反如果一个页面没有任何链入页面,那么它没有等级。
3.3 PageRank 简单计算:
假设一个由只有 4 个页面组成的集合:A,B,C 和 D。如果所有页面都链向 A,那么 A 的 PR(PageRank)值将是
B,C 及 D 的和。
继续假设 B 也有链接到 C,并且 D 也有链接到包括 A 的 3 个页面。一个页面不能投票 2 次。所以 B 给每个页面半票。以
同样的逻辑,D 投出的票只有三分之一算到了 A 的 PageRank 上。
换句话说,根据链出总数平分一个页面的 PR 值。
例子:
如图 1所示的例子来说明 PageRank 的具体计算过程。ÎÎ

3.4 修正 PageRank 计算公式:
由于存在一些出链为 0,也就是那些不链接任何其他网页的网, 也称为孤立网页,使得很多网页能被访问到。因此需
要对 PageRank 公式进行修正,即在简单公式的基础上增加了阻尼系数(damping factor)q, q 一般取值 q=0.85。
其意义是,在任意时刻,用户到达某页面后并继续向后浏览的概率。Î1- q= 0.15 就是用户停止点击,随机跳到新 URL 的
概率)的算法被用到了所有页面上,估算页面可能被上网者放入书签的概率。
最后,即所有这些被换算为一个百分比再乘上一个系数 q。由于下面的算法,没有页面的 PageRank 会是 0。所以,
Google 通过数学系统给了每个页面一个最小值。
这个公式就是.S Brin 和 L. Page 在《The Anatomy of a Large- scale Hypertextual Web Search Engine Computer
Networks and ISDN Systems 》定义的公式。
所以一个页面的 PageRank 是由其他页面的 PageRank 计算得到。Google 不断的重复计算每个页面的 PageRank。如果
给每个页面一个随机 PageRank 值(非 0),那么经过不断的重复计算,这些页面的 PR 值会趋向于正常和稳定。这就是搜
索引擎使用它的原因。
剩余16页未读,继续阅读
资源评论

- jwf03262014-04-11这是不错的资源,大家可以学习

minger8793
- 粉丝: 0
- 资源: 2
上传资源 快速赚钱
我的内容管理 收起
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


会员权益专享
安全验证
文档复制为VIP权益,开通VIP直接复制
