下载 >  人工智能 >  机器学习 > An Introduction to Statistical Learning with Applications in R(英文版和中文版),不错!

An Introduction to Statistical Learning with Applications in R(英文版和中文版),不错!

An Introduction to Statistical Learning (英文版和中文版),统计学习导论 基于R应用,学习机器学习入门的经典书籍,包括中文版和英文版
2018-04-15 上传大小:23.13MB
分享
收藏 举报
【VIP免费】 机器学习之矩阵 【VIP免费】 机器学习讲师版
一些变量筛选方法——2、《An Introduction to Statistical Learning with R》上的数据降维方法
An Introduction to Statistical Learning (英文版中文版

An Introduction to Statistical Learning (英文版和中文版),统计学习导论 基于R应用,学习机器学习入门的经典书籍,包括中文版和英文版

立即下载
统计学习导论-基于R应用(书+思维导图+书中代码+习题答案):an introduction to statistical learning

统计学习导论-基于R应用(书+思维导图+书中代码+习题答案)

立即下载
introduction to statistical learning with R

介绍如何用R语言进行大数据分析,监督学习以及无监督学习的实现

立即下载
An Introduction to Statistical Learning with Applications in R.pdf

An Introduction to Statistical Learning with Applications in R.pdf

立即下载
An Introduction to Statistical Learning 的中文版(统计学习导论)

斯坦福大学公开课An Introduct to Statistical Learning 的指定教材中文版《统计学习导论》

立即下载
统计学习导论An Introduction to Statistical Learning (中文标签版)

作者: Gareth James, Daniela Witten, TrevorHastie and Robert Tibshirani 《统计学方法概论》是本书单最受欢迎的入门读物之一。它从机器学习的角度对数据科学进行了介绍。本书介绍了关于如何使用统计计算与机器学习的方法,为刚刚进入机器学习领域的初学者提供了明确清晰的指导。此外,本书还囊括了诸多应用实例与算法解析。对于那些青睐R编程的学习者,本书也有实例介绍。如果你不是程序员,可千万别被这本书吓倒。无论如何,这本书堪比无价之宝。

立即下载
Learning R中文版

《学习R》讲解如何使用R语言及其软件环境分析数据,即使没有编程经验也能看懂。通过这本实用教程,你可以轻松掌握如何使用必要的R工具来分析数据,同时掌握相关数据类型和通用的编程概念。 《学习R》后半部分会讲到数据分析的各种实际应用,涵盖导入数据和发布结果。另外,值得一提的是,本书每一章都会结合所讲内容提供精心编制的小测试和练习题,需要编写R代码完成,从而巩固所学的知识。

立即下载
An Introduction to Statistical Learning

R语言与统计学习经典教材 An Introduction to Statistical Learning with Applications in R

立即下载
An introduction to Statistical Learning with R

统计学教材 基于R语言 是非常适合入门统计分析的一本教材

立即下载
An Introduction to Statistical Learning with Applications in R

Elements of Statistical Learning的入门版,机器学习的经典著作

立即下载
An Introduction to Statistical Learning 中文版(统计学习导论)

An Introduction to Statistical Learning (中文版) 统计学习导论 基于R应用,学习机器学习入门的经典书籍

立即下载
Learning R(中文版)

R 基础中的基础

立即下载
ESL英文版+中文版+答案 The Elements of Statistical Learning 统计学习基础

The Elements of Statistical Learning 统计学习基础,包括中文影印版、英文第二版、英文答案3个pdf

立即下载
Elements of Statistical Learning 中文加英文版

最经典的统计学习教材,机器学习入门教材,需要的赶紧来取了。中英双语版

立即下载
Introduction to Machine Learning with Applications in Information Security

For the past several years, I’ve been teaching a class on “Topics in Information Security.” Each time I taught this course, I’d sneak in a few more machine learning topics. For the past couple of years, the class has been turned on its head, with machine learning being the focus, and information security only making its appearance in the applications. Unable to find a suitable textbook, I wrote a manuscript, which slowly evolved into this book. In my machine learning class, we spend about two weeks on each of the major topics in this book (HMM, PHMM, PCA, SVM, and clustering). For each of these topics, about one week is devoted to the technical details in Part I, and another lecture or two is spent on the corresponding applications in Part II. The material in Part I is not easy—by including relevant applications, the material is reinforced, and the pace is more reasonable. I also spend a week covering the data analysis topics in Chapter 8 and several of the mini topics in Chapter 7 are covered, based on time constraints and student interest.1 Machine learning is an ideal subject for substantive projects. In topics classes, I always require projects, which are usually completed by pairs of students, although individual projects are allowed. At least one week is allocated to student presentations of their project results. A suggested syllabus is given in Table 1. This syllabus should leave time for tests, project presentations, and selected special topics. Note that the applications material in Part II is intermixed with the material in Part I. Also note that the data analysis chapter is covered early, since it’s relevant to all of the applications in Part II.

立即下载
An Introduction to Statistical Learning with Applications in R(带书签)

An Introduction to Statistical Learning with Applications in R 高清英文版,带书签

立即下载
The Elements of Statistical Learning(ESL)第二版英文原版+答案

【更多关于《机器学习》资料,加qq群:851916415领取!】 The Elements of Statistical Learning(ESL)第二版,英语原版非中文版,内附有书本答案 压缩包文件2个: 1.ESL第二版原版书籍 2.ESL第二版答案

立即下载
统计学习基础第二版(更新到最新勘误) The Elements of Statistical Learning

统计机器学习的经典之作,无数大神推荐与入门,这是最新版,清楚讲解统计机器学习中各种算法,建立起统计学习的框架,此书英文容易理解,推荐

立即下载
Statistical Reinforcement Learning - Modern Machine Learning Approaches

Statistical Reinforcement Learning: Modern Machine Learning Approaches Masashi Sugiyama Taylor & Francis, 16 Mar 2015 - Business & Economics - 206 pages Reinforcement learning is a mathematical framework for developing computer agents that can learn an optimal behavior by relating generic reward signals with its past actions. With numerous successful applications in business intelligence, plant control, and gaming, the RL framework is ideal for decision making in unknown environments with large amounts of data. Supplying an up-to-date and accessible introduction to the field, Statistical Reinforcement Learning: Modern Machine Learning Approaches presents fundamental concepts and practical algorithms of statistical reinforcement learning from the modern machine learning viewpoint. It covers various types of RL approaches, including model-based and model-free approaches, policy iteration, and policy search methods. Covers the range of reinforcement learning algorithms from a modern perspective Lays out the associated optimization problems for each reinforcement learning scenario covered Provides thought-provoking statistical treatment of reinforcement learning algorithms The book covers approaches recently introduced in the data mining and machine learning fields to provide a systematic bridge between RL and data mining/machine learning researchers. It presents state-of-the-art results, including dimensionality reduction in RL and risk-sensitive RL. Numerous illustrative examples are included to help readers understand the intuition and usefulness of reinforcement learning techniques. This book is an ideal resource for graduate-level students in computer science and applied statistics programs, as well as researchers and engineers in related fields.

立即下载
关闭
img

spring mvc+mybatis+mysql+maven+bootstrap 整合实现增删查改简单实例.zip

资源所需积分/C币 当前拥有积分 当前拥有C币
5 0 0
点击完成任务获取下载码
输入下载码
为了良好体验,不建议使用迅雷下载
img

An Introduction to Statistical Learning with Applications in R(英文版和中文版),不错!

会员到期时间: 剩余下载个数: 剩余C币: 剩余积分:0
为了良好体验,不建议使用迅雷下载
VIP下载
您今日下载次数已达上限(为了良好下载体验及使用,每位用户24小时之内最多可下载20个资源)

积分不足!

资源所需积分/C币 当前拥有积分
您可以选择
开通VIP
4000万
程序员的必选
600万
绿色安全资源
现在开通
立省522元
或者
购买C币兑换积分 C币抽奖
img

资源所需积分/C币 当前拥有积分 当前拥有C币
5 4 45
为了良好体验,不建议使用迅雷下载
确认下载
img

资源所需积分/C币 当前拥有积分 当前拥有C币
5 0 0
为了良好体验,不建议使用迅雷下载
VIP和C币套餐优惠
img

资源所需积分/C币 当前拥有积分 当前拥有C币
5 4 45
您的积分不足,将扣除 10 C币
为了良好体验,不建议使用迅雷下载
确认下载
下载
您还未下载过该资源
无法举报自己的资源

兑换成功

你当前的下载分为234开始下载资源
你还不是VIP会员
开通VIP会员权限,免积分下载
立即开通

你下载资源过于频繁,请输入验证码

您因违反CSDN下载频道规则而被锁定帐户,如有疑问,请联络:webmaster@csdn.net!

举报

若举报审核通过,可返还被扣除的积分

  • 举报人:
  • 被举报人:
  • *类型:
    • *投诉人姓名:
    • *投诉人联系方式:
    • *版权证明:
  • *详细原因: