线性代数引论课后题答案


-
Introduction to linear algebra/Lee W. Johnson, R. Dean Riess, Jimmy T. Arnold.-5th ed.课后习题答案
Ⅴ i CONTENTS 3.8 Least-Squares Solutions to Inconsistent Systems 3.9 Fitting Data and Least Squares Soluti 92 3.10 Supplementary Exercises 3.11C tual exercises 96 1 The Eigenvalue Problems 99 1.1 Introduction 4.2 Determinants and the Eigenvalue Problem ·· 101 4.3 Elementary Opcrations and Determinants 104 4.4 Eigenvalues and the Charactcristic Polynomial 108 4.5 Eigenvalues and eigenvectors .112 4.6 Complex eigenvalues and eigenvectors 117 4.7 Similarity Transformations Diagonalizatic 121 4.841 128 4. 9 Supplementary Exercises 132 4.10 Conceptual Exercises 132 5 Vector Spaces and Linear Transformations 135 5. 1 Introduction(No exercises) 135 5. 2 Vector Spaces 135 139 5. 4 Linear Independence, Bases, and Coordinates 144 5.5Di 147 5.6 Inner-products 150 5.7 Linear Transformations ..154 5. 8 Operations with Linear Transformations 158 5.9 Matrix Representations for Linear Transformations 161 5.10 Change of Basis and Diagonalization 166 5.11 Supplementary Exercises 171 5.12 Conceptual Exercises 173 6 Determinants 17 6. 1 Introduction(No exercises) 175 6.2 Cofactor Expansion of Determinants 175 6. 3 Elementary Operations and Determinants .178 6.4 Cramer's Rule 183 6.5 Applications of Determinants 186 6.6 Supplementary exercises 6.7 Conceptual Exercises 7 Eigenvalues and Applications 193 7. 1 Quadratic Fo 193 7. 2 Systems of Differential equations 197 7.3 Transformation to Hessenberg Form 199 7. 4 Eigenvalues of Hessenberg matrices 202 7.5 Householder Transformations 206 7.66 QR Factorization least-Squares 208 7.7 Matrix Polynomials &z The Cayley-Hamilton Theorem 7.8 Generalized Eigenvectors Diff. Eqns 212 7. 9 Supplementary Exercises 216 7.10 Conceptua.l Exercises C hapter 1 Matrices and Systems of Equations 1.1 Introduction to matrices and systems of Linear equations 1.L 2. Nonline 3. Linear 4. Nonl 5. Nonlinear 6. Linear 7. I3. 71+3·2 4 r 24·1 61-x2+ 146·2-(-1)+1=14 +2x2+43 42+2·(-1)+4·1 4 C1+x 0 1+(-1 0 3x1+4℃2 3:1+4(-1) 1+2 31+2·(1) 10.3 4.2 8 1. Unique solution 12. No Soluti 13. Infinitely many solutions 2 CHAPTER 1. MATRICES AND SYSTEMS OF EQUATIONS 14. No solution 15.(a) The planes do not intersect; that is, the planes are parallel (b)The planes intersect in a line or the planes are coincident 16. The planes intersect in the line t-(1-t)/2,=2, x-t 17. The planes intersect in the line T=4-3t, y=2t-1,i-t 18. Coincident planes 19.A 216 438 20.C 1271 243 1-3 21.O 2123 211 +2x2+7x3 2m1+2:2+4m3=3 23 21 + 6 x1+4x 3 4m1+3r2 821+ 31+2 11 111 4.4 B 11 113 25.A 11 1112 B 2 11111 20-11 11 26.A 0351 B 351 532 11 27.A一 131111 211 B 34-15 1 28.1= 123 5|.B= 111 123 52 1.1. INTRODUCTION TO MATRICES AND SYSTEMS OF LINEAR EQUATIONS 3 29.A=231|,B 2312 l-132 30. Elementary operations on equations: E2-2E1 Rcduccd systcm of cquations 2x1+32 6 Elementary row operations: R2- 2Rl Reduced augmented matrix 236 0-7-5 31. Lementary operations on equations: F2-F1, F3 +2FL 1+2℃2 Reduced syslem of equations +3 Elementary row operations: R2-R1, R3 +2 Rl 12-1 Reduced augmented matrix 100 5 132 6 32. Elementary operations on equations: E1+ E2, E3-2El 1 Reduced system of equations 4 4 Elementary row operations: R1< R2. R3-2R1 Reduced augmented matrix:0 114 0354 33. Elementary operations on equations: E2-E1, E3-3E1 1+ 9 Rcduccd systcm of cquations 2 21 Elementary row operations: R2- Rl, R3-3R1 11 Rcduccd augmented matrix:0 2 921 0-2-2 4 CHAPTER 1. MATRICES AND SYSTEMS OF EQUATIONS 34. Elementary operations on equations: 2+E1, E3 +2E1 x1+2 Reduced system of equations 3x2+3.x3-3x4 144 Elementary row operations: R2+R1, Rg+ 2R1 111-11 Reduced augmented matrix:02004 033-34 35. Lementary operations on equations: F2+ F1, F3+ Fl x1十2 Reduced system of equations 2+:3-4 3x2+6 Elementary row operations: R2++ Rl, R3+ Ri Reduced augmented matrix:0 1 1-13 03601 36. Elcmcntary opcrations on cquations: E2 E1, E3 3E1 1+C Reduced system of equations 000 Elementary row operations: R2-R1, R3 -3Rl 110 Reduced augmented matrix:0-2 0 0 37.(b)In each case, the graph of the resulting equation is a line 38. Now if u11=0 we easily obtain the equivalent system 1+ Thus we may suppose that a11+0. Then 111a122 E2(u21/1)E1 a211+a232=b2 l.1. INTRODUCTION TO MATRICES AND SYSTEMS OF LINEAR EQCATIONS 5 111a1 E2 (-21/(a1)a12+a2)x2=(-021/1)b1+b2 3 +a11b2 Each of al and(a11a22-a12a21)is non-zero 39.Le 11°1 b1 2 and let 11x1+ ca21C1+ca22C2-cb2 Suppose thal 1-51.J2=82 is d solutio on to A. Then a1151+01252-b1, and a2151+ But this means that ca21S1 Ca2282= cb2 and so C1=s1: 22= S2 is also a solution to B. Now suppose that m1=t1, 2=t2 is a solution to B. Then a11t1+a12t2=61 and ca21t1 + Ca22t2= cb2. Since c=0,a21I1+a2202=b2. 10. Let a111+ b1 x1+a22 nd let a1101+a12x2=b1 (a21+cu1)x1+(a22+c12)x2=b2+cbn Let 1-5 and z2- s2 be a solution to A. Then a1151+01282-b1 and a2151+022s2-b2 so a1151+a12S2-b1 and(a21+ca11)s1+(a22+Ca12)s2=b2+cb1 as required. Now if x1=t1 and 2=t2 is a solution to B thon alti t a12t2= b1 and (a21+ ca11)t1+(a22+ ca12)t2=b2+ cb1, sO a11t1+012t2=b1 and a21t1+a12t2=b2 as required 41. The proof is very similar to that of 45 and 46 42. By adding the two equations we obtain: 2. 1-2. 1 =4. Then m1=2 or 1=-1 and substituting these values in the second equation we find that there are three solutions 0 6 CHAPTER 1. MATRICES AND SYSTEMS OF EQUATIONS 1.2 Echelon form and gauss-Jordan elimination 1. The matrix is in echelon form. The row operation R2- 2R1 transforms the matrix to reduced echelon form 01 10-7 2. Echelon form. R2-2 Ri yields reduced row echelon form 3. Not in echelon form. (12) Ri, R2-1R1, (-1/5)R2 yields echelon form/1 3/21/2 2/5 4. Not in echelon form. R1 t R2 vields echelon form 011 Not in echelon form R1<>R2,(1/2)R1(1/2)H2 yiclds the cchclon form/I 01/22 0013/2 6. Not in echelon form 103/21/2 (1/2)Rl yields the echelon form 00 7. Not in echelon form. R2-4R3, R1-2Rg, R1-3R2 yields the reduced echelon form 1005 010-2 L00 1 1/232 Not in echelon form. (1/2)R1,(-1/3)Rs yields the echelon formo 12-1 9. Not in echelon form.(1/2) R2 yields the echelon form 000 1-43 6 10. Not in echelon form -Rl, (1/2)R2 yields the echelon form 0 1 1/2-3/2-3/2 000 0,x2=0. 12. The system is inconsistent 13. 1=-2+533 x2=l-3x3, I3 is arbitrary. 14.x1=1-2x3x2=0

-
2020-01-29
879KB
Linear Algebra 线性代数课后答案
2010-07-13Lee W.Johnson R.Dean Riess Jimmy T.Arnold Introduction to linear Algebra
895KB
线性代数导论第5版课后答案
2018-07-19对应mit线性代数导论(GILBERT STRANG)第5版,所有章节课后答案
线性代数导论第五版答案--Gilbert Strang下载_course
2019-01-12Gilbert Strang 线性代数导论第五版答案 MIT 公开课:Gilbert Strang《线性代数》 相关下载链接://download.csdn.net/download/listm8/1
60.96MB
线性代数导论第五版--Gilbert Strang
2019-01-12MIT 公开课:Gilbert Strang《线性代数》 使用的教科书第五版
904KB
线性代数导论第五版答案--Gilbert Strang
2019-01-12Gilbert Strang 线性代数导论第五版答案 MIT 公开课:Gilbert Strang《线性代数》
3.41MB
《近世代数引论》部分习题答案
2009-11-22冯克勤、李尚志编著的《近世代数引论》部分习题答案
13.54MB
《组合数学引论》孙淑玲、许胤龙,版本讲义部分课后习题答案
2018-07-12该资源是《组合数学引论》孙淑玲、许胤龙,版本讲义部分课后习题答案,里面包含了大部分的课后习题的详细讲解,希望下载者可以先自己思考后再阅读该课后习题答案!
1.41MB
MIT_耶鲁大学线性代数公开课习题和答案
2018-06-17网易云课堂公开课,耶鲁大学著名教授G的线性代数,考研复习,想换种学习方法,可以同时学数学和英语,特意跑官网下下来的学习资料,习题很重要
676KB
组合数学引论部分课后习题答案
2019-01-18本参考答案是人工整理,难免有不足与错误,仅供参考。 适用于中国科学技术大学出版社出版,许胤龙、孙淑玲编著的组合数学引论(第2版)一书。
42.72MB
线性模型引论 王松桂史建红版
2017-08-19线性模型引论
2.7MB
《随机过程引论》习题答案中科大奚宏生
2017-03-29中科大奚宏生版《随机过程引论》习题答案,不过暂时只有前两章的答案!
51.83MB
Introduction to Linear Algebra 5th(线性代数引论第五版 文字版)
2019-01-20Introduction to Linear Algebra(5th edition 2016)文字版!不是扫描版,带章节标题!
667KB
2020最新中科大组合数学引论课后答案整理全
2019-11-062020最新中科大组合数学引论课后答案整理全方便复习使用
138KB
计算机科学引论重点知识及课后答案
2019-01-26计算机科学引论重点知识及课后答案,里面包含习题讲解,课后专业单词翻译非常全
167KB
哈工大数理逻辑课后答案
2019-01-05哈工大数理逻辑的课后答案,帮助学习学妹完成作业哦,仅供参考。 哈工大数理逻辑的课后答案,帮助学习学妹完成作业哦,仅供参考。
6.94MB
研究生教材 矩阵论 课后习题答案
2009-11-06研究生教材 矩阵论 课后习题答案研究生教材 矩阵论 课后习题答案
3.72MB
随机过程课后题答案
2018-10-23随机过程课后题答案,随机过程课后题答案,随机过程课后题答案,重要事情说三遍
10.69MB
哈工大离散数学课后习题答案
2019-01-04哈工大离散数学课后习题答案,王义和编著,2-8章答案,王老师手写。
5.95MB
线性代数教材第五版
2017-07-10线性代数基础知识,可作为算法研究参考书
4.88MB
线性代数导论
2016-08-18麻省理工公开课:线性代数制定教材,by Robert A. Beezer Department of Mathematics and Computer Science University of Pu
63KB
数值计算引论第二版 答案
2011-05-05数值计算引论 第二版 白峰杉的课后习题答案(部分)
116KB
近世代数课后答案和习题集
2009-11-12抽象代数即近世代数。 代数〔Algebra〕是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。 初等代数学是指19世纪上半叶以前发展的方程理论,主要研究某一方程〔组〕是否可解,
4.20MB
MIT线性代数导论笔记
2017-07-05MIT线性代数导论笔记
2.9MB
北航数值分析课后习题答案
2013-10-25北航数值分析课后习题答案 很实用 北航工科的研究生必备利器
5.6MB
信号与系统(郑君里版)课后习题答案完整版 第二版
2013-04-12信号与系统(郑君里版)课后习题答案完整版 第二版 第三版的也适用,因为第二版的题要比第三版的多
236KB
数值分析课后习题答案
2019-03-28数值分析的课后习题答案第0章到第二章的pdf版本,公式清晰
34.28MB
1. gilbert strang 的《Introduction to Linear Algebra 线性代数导论》(4th Ed.)
2017-10-06这本教材是Gilbert Strang教授在MIT讲授《线性代数》课程的指定教材(MIT Open Course Ware提供公开课视频),也是被很多其他大学选用的经典教材。这本教材难度适中,讲解清晰
-
下载
Hackathon2021-team27-源码
Hackathon2021-team27-源码
-
博客
ElasticSearch学习文档
ElasticSearch学习文档
-
学院
QT编程思想【C++,基于QT 6】
QT编程思想【C++,基于QT 6】
-
博客
1.3 交换两个变量的值
1.3 交换两个变量的值
-
博客
while操作案例
while操作案例
-
博客
程序语言的变迁
程序语言的变迁
-
学院
《文件和目录操作命令》<Linux核心命令系列Series> <2.>
《文件和目录操作命令》<Linux核心命令系列Series> <2.>
-
学院
Docker核心技术进阶教程
Docker核心技术进阶教程
-
下载
h26x-extractor:从H.264比特流中提取NAL单元,并对它们的类型和内容进行解码-源码
h26x-extractor:从H.264比特流中提取NAL单元,并对它们的类型和内容进行解码-源码
-
博客
springboot的一些配置文件
springboot的一些配置文件
-
学院
使用vue搭建微信H5公众号项目
使用vue搭建微信H5公众号项目
-
下载
ax96.ml:我最喜欢的音乐视频和项目的网站在这里显示-源码
ax96.ml:我最喜欢的音乐视频和项目的网站在这里显示-源码
-
学院
Oracle_11g_Linux到Linux_DataGuard部署
Oracle_11g_Linux到Linux_DataGuard部署
-
博客
ubuntu 16.04安装ros&qt
ubuntu 16.04安装ros&qt
-
学院
计算机网络 应用层 诸多协议 实验环境搭建
计算机网络 应用层 诸多协议 实验环境搭建
-
博客
See your world
See your world
-
博客
js命名规范
js命名规范
-
下载
New_monta-源码
New_monta-源码
-
学院
MySQL 索引
MySQL 索引
-
下载
websiteofphuc-源码
websiteofphuc-源码
-
博客
Linux - yum
Linux - yum
-
学院
CCNA_CCNP 思科网络认证 《 配置路由器作为DHCP服务器;无
CCNA_CCNP 思科网络认证 《 配置路由器作为DHCP服务器;无
-
下载
flappybird:pygame教程-源码
flappybird:pygame教程-源码
-
学院
CCNA_CCNP 思科网络认证 网络层安全(通过 ACL 访问控制列
CCNA_CCNP 思科网络认证 网络层安全(通过 ACL 访问控制列
-
学院
CCNA_CCNP 思科网络认证 PAT NAT 端口或地址转换 与端
CCNA_CCNP 思科网络认证 PAT NAT 端口或地址转换 与端
-
博客
数组小结
数组小结
-
博客
2021-03-06
2021-03-06
-
下载
dawnwhisper.github.io-源码
dawnwhisper.github.io-源码
-
下载
Portfolio3-源码
Portfolio3-源码
-
学院
零基础极简以太坊智能合约开发环境搭建并开发部署
零基础极简以太坊智能合约开发环境搭建并开发部署