没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
COURSERA 机器学习课笔记
by Prof. Andrew Ng
Notes by Ryan Cheung
Ryanzjlib@gmail.com
Weibo@小小人_V
1
目录
目录 ............................................................................................................................................................. 1
Week1 机器学习介绍 ............................................................................................................................. 7
1 机器学习介绍..................................................................................................................................... 7
1.1 什么是机器学习? ............................................................................................................................ 7
1.2 监督学习(Supervised Learning) ................................................................................................ 7
1.3 非监督学习(Unsupervised Learning) ........................................................................................ 9
Week1 单变量线性回归 ...................................................................................................................... 11
2 单变量线性回归(Linear Regression with One Variable) ........................................................... 11
2.1 模型表达(Model Representation) ............................................................................................ 11
2.2 代价函数(Cost Function) ......................................................................................................... 12
2.3 梯度下降(Gradient Descent) .................................................................................................... 13
2.4 对线性回归运用梯度下降法........................................................................................................ 13
Week2 多变量线性回归 ...................................................................................................................... 15
3 多变量线性回归(Linear Regression with Multiple Variables) .................................................. 15
3.1 多维特征(Multiple Features) .................................................................................................. 15
3.2 多变量梯度下降(Gradient descent for multiple variables) ..................................................... 16
3.3 特征缩放(feature scaling) ........................................................................................................ 16
3.4 学习率(Learning rate) ................................................................................................................... 17
Week2 多项式回归和正规方程 ......................................................................................................... 19
4 多项式回归和正规方程................................................................................................................... 19
2
4.1 多项式回归(Polynomial Regression) ...................................................................................... 19
4.2 正规方程(Normal Equation) .................................................................................................... 19
Week3 归一化 ...................................................................................................................................... 21
5 逻辑回归(Logistic Regression) .................................................................................................. 21
5.1 分类问题........................................................................................................................................ 21
5.2 分类问题建模................................................................................................................................ 21
5.3 判定边界(Decision Boundary)................................................................................................. 23
5.4 代价函数........................................................................................................................................ 24
5.5 多类分类(Multiclass Classification) ........................................................................................ 26
Week3 归一化 ...................................................................................................................................... 28
6 归一化(Regularization) ............................................................................................................... 28
6.1 过拟合问题(The Problem of Overfitting) ................................................................................ 28
6.2 归一化代价函数(Regularization Cost Function) .................................................................... 29
6.3 归一化线性回归(Regularized Linear Regression) .................................................................. 30
6.4 归一化逻辑回归(Regularized Logistic Regression) ............................................................... 31
Week4 神经网络:表达 ...................................................................................................................... 32
7 神经网络:表达 .............................................................................................................................. 32
7.1 非线性假设(Non-Linear Hypothesis) ...................................................................................... 32
7.2 神经网络介绍................................................................................................................................ 32
7.3 模型表达........................................................................................................................................ 33
7.4 神经网络模型表达........................................................................................................................ 34
7.5 正向传播 (Forward Propagation) ................................................................................................. 35
3
7.6 对神经网络的理解........................................................................................................................ 36
7.7 神经网络示例:二元逻辑运算符(Binary Logical Operators) ............................................... 36
7.8 多类分类........................................................................................................................................ 37
Week5 神经网络:学习 ...................................................................................................................... 39
8 神经网络:学习 .............................................................................................................................. 39
8.1 神经网络代价函数........................................................................................................................ 39
8.2 反向传播算法(Backpropagation Algorithm)........................................................................... 39
8.3 梯度检验(Gradient Checking) ................................................................................................. 42
8.4 随机初始化(Random Initialization) ......................................................................................... 43
8.5 综合起来........................................................................................................................................ 43
Week6 机器学习应用建议 .................................................................................................................. 45
9 机器学习应用建议........................................................................................................................... 45
9.1 决定下一步做什么........................................................................................................................ 45
9.2 假设的评估(Evaluating a Hypothesis) .................................................................................... 45
9.3 模型选择(交叉验证集)............................................................................................................ 46
9.4 偏倚和偏差诊断(Diagnosis Bias vs. Variance) ...................................................................... 46
9.5 归一化与偏倚/偏差 ...................................................................................................................... 47
9.6 学习曲线(Learning Curves) ..................................................................................................... 49
9.7 决定下一步做什么........................................................................................................................ 50
Week6 机器学习系统设计 .................................................................................................................. 52
10 机器学习系统设计......................................................................................................................... 52
10.1 首先要做什么.............................................................................................................................. 52
4
10.2 误差分析(Error Analysis) ...................................................................................................... 52
10.3 类偏斜的误差度量(Error Metrics for Skewed Classes) ........................................................ 53
10.4 查全率和查准率之间的权衡...................................................................................................... 54
10.5 机器学习的数据.......................................................................................................................... 55
Week7 支持向量机 .............................................................................................................................. 56
11 支持向量机(Support Vector Machine) .................................................................................... 56
11.1 优化目标(Optimization Objective) ........................................................................................ 56
11.2 支持向量机判定边界(SVM Decision Boundary) ................................................................. 58
11.3 核函数(Kernels) ..................................................................................................................... 59
11.4 逻辑回归与支持向量机.............................................................................................................. 63
Week8 聚类 ........................................................................................................................................... 64
12 聚类(Clustering) ........................................................................................................................ 64
12.1K-均值算法 .................................................................................................................................. 64
12.2 优化目标...................................................................................................................................... 66
12.3 随机初始化.................................................................................................................................. 66
12.4 选择聚类数.................................................................................................................................. 66
Week8 降维 ........................................................................................................................................... 67
13 降维(Dimensionality Reduction) .............................................................................................. 67
13.1 动机一:数据压缩(Data Compression) ............................................................................... 67
13.2 动机二:数据可视化(Data Visualization) ............................................................................ 68
13.3 主要成分分析(Principal Component Analysis) .................................................................... 68
13.4 主要成分分析算法...................................................................................................................... 69
剩余92页未读,继续阅读
资源评论
- WilliamLuocsdn2018-04-16写的很好,值得推荐
- jshazk19892017-10-18正在拜读,谢谢分享
- gzvincentlee2017-03-13谢谢分享资料!
- abcddtt2017-10-25正在拜读,谢谢分享
mattair
- 粉丝: 2
- 资源: 5
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 锂电涂布机市场蓬勃发展:2023年我国锂电池出货量已突破887.4GWh
- OpenCV+Dlib 人脸识别项目
- 基于Java和HTML技术的认知诊断系统设计源码
- 基于GitHub平台的Python、Java、C++ LeetCode编程题解设计源码分享
- 基于Python的崩坏学园2游戏脚本自动化设计源码
- 基于Python实现的Jiagu深度学习自然语言处理工具源码
- VR 物理交互插件:Hurricane VR - Physics Interaction Toolkit v2.9.1h2
- 11111111111111111111
- 基于Spring Boot和Layui的JavaEE四六级报名系统设计源码
- 基于FPGA的图像中值滤波算法实现 在vivado上用verilog实现 仿真模型用lenna典型图像,500×500分辨率
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功