from datetime import datetime
import numpy as np
import pandas as pd
import requests
import json
from sklearn.linear_model import LinearRegression # 线性回归
from sklearn.impute import SimpleImputer
def recently():
url = "https://ys.endata.cn/enlib-api/api/movie/getMovie_BoxOffice_Day_Chart.do"
header = {
"User-Agent": 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.82 Safari/537.36',
"Cookie": 'JSESSIONID=b2685bfa-aa4f-4359-ae96-57befaf8d1ec; route=4e39643a15b7003e568cadd862137cf3; Hm_lvt_82932fc4fc199c08b9a83c4c9d02af11=1649834963,1649852471,1649859039,1649900037; Hm_lpvt_82932fc4fc199c08b9a83c4c9d02af11=1649917933'
}
post_BoxOffice_Day_data = {
'r': 0.7572955414768414,
'datetype': 'Day',
'date': datetime.now().strftime('%Y-%m-%d'),
'sdate': datetime.now().strftime('%Y-%m-%d'),
'edate': datetime.now().strftime('%Y-%m-%d'),
'bserviceprice': 1
}
res = requests.post(url, headers=header, data=post_BoxOffice_Day_data).text
json_data = json.loads(res)
data0 = json_data['data']['table0']
data1 = json_data['data']['table1']
movie_rank = []
movie_details_MovieName = []
movie_details_BoxOffice = []
movie_details_ShowCount = []
movie_details_AudienceCount = []
movie_details_Attendance = []
movie_percent_BoxOfficePercent = []
movie_percent_ShowCountPercent = []
movie_percent_AudienceCountPercent = []
movie_city1_BoxOffice = []
movie_city1_ShowCount = []
movie_city1_AudienceCount = []
movie_city2_BoxOffice = []
movie_city2_ShowCount = []
movie_city2_AudienceCount = []
movie_city3_BoxOffice = []
movie_city3_ShowCount = []
movie_city3_AudienceCount = []
movie_city4_BoxOffice = []
movie_city4_ShowCount = []
movie_city4_AudienceCount = []
movie_others_BoxOffice = []
movie_others_ShowCount = []
movie_others_AudienceCount = []
for i in range(10):
movie_rank.append(data0[i]['Irank'])
movie_details_MovieName.append(data0[i]['MovieName'])
movie_details_BoxOffice.append(data0[i]['BoxOffice'])
movie_details_ShowCount.append(data0[i]['ShowCount'])
movie_details_AudienceCount.append(data0[i]['AudienceCount'])
movie_details_Attendance.append(data0[i]['Attendance'])
movie_percent_BoxOfficePercent.append(data0[i]['BoxOfficePercent'])
movie_percent_ShowCountPercent.append(data0[i]['ShowCountPercent'])
movie_percent_AudienceCountPercent.append(data0[i]['AudienceCountPercent'])
movie_city1_BoxOffice.append(data1[i * 5]['BoxOffice'])
movie_city1_ShowCount.append(data1[i * 5]['ShowCount'])
movie_city1_AudienceCount.append(data1[i * 5]['AudienceCount'])
movie_city2_BoxOffice.append(data1[i * 5 + 1]['BoxOffice'])
movie_city2_ShowCount.append(data1[i * 5 + 1]['ShowCount'])
movie_city2_AudienceCount.append(data1[i * 5 + 1]['AudienceCount'])
movie_city3_BoxOffice.append(data1[i * 5 + 2]['BoxOffice'])
movie_city3_ShowCount.append(data1[i * 5 + 2]['ShowCount'])
movie_city3_AudienceCount.append(data1[i * 5 + 2]['AudienceCount'])
movie_city4_BoxOffice.append(data1[i * 5 + 3]['BoxOffice'])
movie_city4_ShowCount.append(data1[i * 5 + 3]['ShowCount'])
movie_city4_AudienceCount.append(data1[i * 5 + 3]['AudienceCount'])
movie_others_BoxOffice.append(data1[i * 5 + 4]['BoxOffice'])
movie_others_ShowCount.append(data1[i * 5 + 4]['ShowCount'])
movie_others_AudienceCount.append(data1[i * 5 + 4]['AudienceCount'])
top10_data = pd.DataFrame({
"影片排名": movie_rank,
"影片名称": movie_details_MovieName,
"影片票房": movie_details_BoxOffice,
"影片场次": movie_details_ShowCount,
"影片人次": movie_details_AudienceCount,
"上座率": movie_details_Attendance,
"影片票房占比": movie_percent_BoxOfficePercent,
"影片场次占比": movie_percent_ShowCountPercent,
"影片人次占比": movie_percent_AudienceCountPercent,
"一线城市票房": movie_city1_BoxOffice,
"一线城市场次": movie_city1_ShowCount,
"一线城市人次": movie_city1_AudienceCount,
"二线城市票房": movie_city2_BoxOffice,
"二线城市场次": movie_city2_ShowCount,
"二线城市人次": movie_city2_AudienceCount,
"三线城市票房": movie_city3_BoxOffice,
"三线城市场次": movie_city3_ShowCount,
"三线城市人次": movie_city3_AudienceCount,
"四线城市票房": movie_city4_BoxOffice,
"四线城市场次": movie_city4_ShowCount,
"四线城市人次": movie_city4_AudienceCount,
"其它票房": movie_others_BoxOffice,
"其它场次": movie_others_ShowCount,
"其它人次": movie_others_AudienceCount
})
print(top10_data)
top10_data.to_csv("data/top10_data.csv", encoding='gbk', index=False)
def showing():
header = {
"User-Agent": 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.82 Safari/537.36',
"Cookie": 'JSESSIONID=edf01a0d-deae-4143-9071-2e7eda2c5055; route=4e39643a15b7003e568cadd862137cf3; Hm_lvt_82932fc4fc199c08b9a83c4c9d02af11=1649859039,1649900037,1649983572,1649988152; Hm_lpvt_82932fc4fc199c08b9a83c4c9d02af11=1650016413'
}
url_total = "https://ys.endata.cn/enlib-api/api/movie/getMovie_BoxOffice_Day_List.do"
total_post_data = {
'r': 0.08330054546930543,
'datetype': 'Day',
'date': datetime.now().strftime('%Y-%m-%d'),
'sdate': datetime.now().strftime('%Y-%m-%d'),
'edate': datetime.now().strftime('%Y-%m-%d'),
'bserviceprice': 1,
'columnslist': '100,102,103,119,105,107,109,106,112,129,142,143,163,164,165',
'pageindex': 1,
'pagesize': 20,
'order': 103,
'ordertype': 'desc',
}
total_res = requests.post(url_total, headers=header, data=total_post_data).text
total_json_data = json.loads(total_res)
pagesize = total_json_data['data']['table2'][0]['TotalCounts']
total_post_data = {
'r': 0.08330054546930543,
'datetype': 'Day',
'date': datetime.now().strftime('%Y-%m-%d'),
'sdate': datetime.now().strftime('%Y-%m-%d'),
'edate': datetime.now().strftime('%Y-%m-%d'),
'bserviceprice': 1,
'columnslist': '100,102,103,119,105,107,109,106,112,129,142,143,163,164,165',
'pageindex': 1,
'pagesize': pagesize,
'order': 103,
'ordertype': 'desc',
}
total_res = requests.post(url_total, headers=header, data=total_post_data).text
total_json_data = json.loads(total_res)['data']['table1']
print(total_json_data)
movies_rank = []
movies_MovieName = []
movies_BoxOffice = []
movies_ReleaseDate = []
movies_TotalBoxOffice = []
movies_ShowCount = []
movies_AudienceCount = []
movies_BoxOfficePercent = []
movies_ReleaseDay = []
movies_ShowDay = []
movies_HjBoxOffice = []
movies_HjShowCount = []
movies_HjBoxOfficePercent = []
movies_HjShowCountPercent = []
movies_HjAudienceCountPercent = []
movies_MaoYanWantToSee = []
movies_TaoPiaoPiaoWantToSee = []
movies_DouBanWantToSee = []
for i in range(pagesize):
if total_json_data[i]['EntMovieID'] != 0:
movies_rank.append(total_json_data[i]['Irank'])
movies_MovieName.append(total_json_data[i]['MovieName'])
movies_BoxOffice.append(total_json_data[i]['BoxOffice'])
movies_ReleaseDate.append(total_json_data[i]['ReleaseDate'])
movies_TotalBoxOffice.append(total_json_data[i]['TotalBoxOffice'])
movies_ShowCount.append(total_json_data[i]['ShowCount'])
movies_AudienceCount.append(total_json_data

盈梓的博客小站
- 粉丝: 3023
- 资源: 576
最新资源
- baiduwenku_AndroidPhone_1029855y.apk
- 8051 高精度电子秤HX711
- 文件反转2.0.py
- 开源OA协同办公系统,集成Flowable流程引擎 可拖拽创建个性表单 基于RuoYi-VUE版本开发
- 开源OA协同办公系统 集成Flowable流程引擎 可拖拽创建个性表单
- 最新版本2023UI千月影视APP源码 开源完美版前后端完美匹配 后端基于ThinkPHP框架
- 浪子易支付源码 优化缓存机制
- PHP域名授权验证系统是一个功能强大的系统,提供了多项功能来保护你的域名和软件的合法性 它包括盗版追踪、域名IP双重授权、在线加
- 支持免费的Openai人工智能 问答记录保留 系统
- 彩纸屋开源定制少儿编程培训管理系统源码 在线培训系统源码
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



- 1
- 2
- 3
- 4
- 5
- 6
前往页