%%
clear;
close all;
clc;
img=imread('car.jpg');%读取路径
figure;
imshow(img);
title('车牌图像');
%% 灰度处理
img1 = rgb2gray(img); % RGB图像转灰度图像
figure;
subplot(1, 2, 1);
imshow(img1);
title('灰度图像');
subplot(1, 2, 2);
imhist(img1);
title('灰度处理后的灰度直方图');
%% 边缘提取
img4 = edge(img1, 'roberts', 0.15, 'both');
figure('name','边缘检测');
imshow(img4);
title('roberts算子边缘检测');
%% 图像腐蚀
se=[1;1;1];
img5 = imerode(img4, se);
figure('name','图像腐蚀');
imshow(img5);
title('图像腐蚀后的图像');
%% 平滑图像,图像膨胀
se = strel('rectangle', [30, 30]);
img6 = imclose(img5, se);
figure('name','平滑处理');
imshow(img6);
title('平滑图像的轮廓');
%% 从图像中删除所有少于2200像素8邻接
img7 = bwareaopen(img6, 2200);
figure('name', '移除小对象');
imshow(img7);
title('从图像中移除小对象');
%% 切割出图像
[y, x, z] = size(img7);
img8 = double(img7); % 转成双精度浮点型
% 车牌的蓝色区域
% Y方向
blue_Y = zeros(y, 1);
for i = 1:y
for j = 1:x
if(img8(i, j) == 1) % 判断车牌位置区域
blue_Y(i, 1) = blue_Y(i, 1) + 1; % 像素点统计
end
end
end
mainfc;
% 找到Y坐标的最小值
img_Y1 = 1;
while (blue_Y(img_Y1) < 5) && (img_Y1 < y)
img_Y1 = img_Y1 + 1;
end
% 找到Y坐标的最大值
img_Y2 = y;
while (blue_Y(img_Y2) < 5) && (img_Y2 > img_Y1)
img_Y2 = img_Y2 - 1;
end
% x方向
blue_X = zeros(1, x);
for j = 1:x
for i = 1:y
if(img8(i, j) == 1) % 判断车牌位置区域
blue_X(1, j) = blue_X(1, j) + 1;
end
end
end
% 找到x坐标的最小值
img_X1 = 1;
while (blue_X(1, img_X1) < 5) && (img_X1 < x)
img_X1 = img_X1 + 1;
end
% 找到x坐标的最小值
img_X2 = x;
while (blue_X(1, img_X2) < 5) && (img_X2 > img_X1)
img_X2 = img_X2 - 1;
end
% 对图像进行裁剪
img9 = img(img_Y1:img_Y2, img_X1:img_X2, :);
figure('name', '定位剪切图像');
imshow(img9);
title('定位剪切后的彩色车牌图像')
% 保存提取出来的车牌图像
imwrite(img9, '车牌图像.jpg');
%% 对车牌图像作图像预处理
plate_img = imread('车牌图像.jpg');
% 转换成灰度图像
plate_img1 = rgb2gray(plate_img); % RGB图像转灰度图像
figure;
subplot(1, 2, 1);
imshow(plate_img1);
title('灰度图像');
subplot(1, 2, 2);
imhist(plate_img1);
title('灰度处理后的灰度直方图');
% 直方图均衡化
plate_img2 = histeq(plate_img1);
figure('name', '直方图均衡化');
subplot(1,2,1);
imshow(plate_img2);
title('直方图均衡化的图像');
subplot(1,2,2);
imhist(plate_img2);
title('直方图');
% 二值化处理
plate_img3 = im2bw(plate_img2, 0.76);
figure('name', '二值化处理');
imshow(plate_img3);
title('车牌二值图像');
% 中值滤波
plate_img4 = medfilt2(plate_img3);
figure('name', '中值滤波');
imshow(plate_img4);
title('中值滤波后的图像');
%% 进行字符识别
plate_img5 = my_imsplit(plate_img4);
[m, n] = size(plate_img5);
s = sum(plate_img5); %sum(x)就是竖向相加,求每列的和,结果是行向量;
j = 1;
k1 = 1;
k2 = 1;
while j ~= n
while s(j) == 0
j = j + 1;
end
k1 = j;
while s(j) ~= 0 && j <= n-1
j = j + 1;
end
k2 = j + 1;
if k2 - k1 > round(n / 6.5)
[val, num] = min(sum(plate_img5(:, [k1+5:k2-5])));
plate_img5(:, k1+num+5) = 0;
end
end
y1 = 10;
y2 = 0.25;
flag = 0;
word1 = [];
while flag == 0
[m, n] = size(plate_img5);
left = 1;
width = 0;
while sum(plate_img5(:, width+1)) ~= 0
width = width + 1;
end
if width < y1
plate_img5(:, [1:width]) = 0;
plate_img5 = my_imsplit(plate_img5);
else
temp = my_imsplit(imcrop(plate_img5, [1,1,width,m]));
[m, n] = size(temp);
all = sum(sum(temp));
two_thirds=sum(sum(temp([round(m/3):2*round(m/3)],:)));
if two_thirds/all > y2
flag = 1;
word1 = temp;
end
plate_img5(:, [1:width]) = 0;
plate_img5 = my_imsplit(plate_img5);
end
end
figure;
subplot(2,4,1), imshow(plate_img5);
% 分割出第二个字符
[word2,plate_img5]=getword(plate_img5);
subplot(2,4,2), imshow(plate_img5);
% 分割出第三个字符
[word3,plate_img5]=getword(plate_img5);
subplot(2,4,3), imshow(plate_img5);
% 分割出第四个字符
[word4,plate_img5]=getword(plate_img5);
subplot(2,4,4), imshow(plate_img5);
% 分割出第五个字符
[word5,plate_img5]=getword(plate_img5);
subplot(2,3,4), imshow(plate_img5);
% 分割出第六个字符
[word6,plate_img5]=getword(plate_img5);
subplot(2,3,5), imshow(plate_img5);
% 分割出第七个字符
[word7,plate_img5]=getword(plate_img5);
subplot(2,3,6), imshow(plate_img5);
figure;
subplot(5,7,1),imshow(word1),title('1');
subplot(5,7,2),imshow(word2),title('2');
subplot(5,7,3),imshow(word3),title('3');
subplot(5,7,4),imshow(word4),title('4');
subplot(5,7,5),imshow(word5),title('5');
subplot(5,7,6),imshow(word6),title('6');
subplot(5,7,7),imshow(word7),title('7');
word1=imresize(word1,[40 20]);%imresize对图像做缩放处理,常用调用格式为:B=imresize(A,ntimes,method);其中method可选nearest,bilinear(双线性),bicubic,box,lanczors2,lanczors3等
word2=imresize(word2,[40 20]);
word3=imresize(word3,[40 20]);
word4=imresize(word4,[40 20]);
word5=imresize(word5,[40 20]);
word6=imresize(word6,[40 20]);
word7=imresize(word7,[40 20]);
subplot(5,7,15),imshow(word1),title('11');
subplot(5,7,16),imshow(word2),title('22');
subplot(5,7,17),imshow(word3),title('33');
subplot(5,7,18),imshow(word4),title('44');
subplot(5,7,19),imshow(word5),title('55');
subplot(5,7,20),imshow(word6),title('66');
subplot(5,7,21),imshow(word7),title('77');
imwrite(word1,'1.jpg'); % 创建七位车牌字符图像
imwrite(word2,'2.jpg');
imwrite(word3,'3.jpg');
imwrite(word4,'4.jpg');
imwrite(word5,'5.jpg');
imwrite(word6,'6.jpg');
imwrite(word7,'7.jpg');
%% 进行字符识别
liccode=char(['0':'9' 'A':'Z' '京辽鲁陕苏豫浙贵']);%建立自动识别字符代码表;'京津沪渝港澳吉辽鲁豫冀鄂湘晋青皖苏赣浙闽粤琼台陕甘云川贵黑藏蒙桂新宁'
% 编号:0-9分别为 1-10;A-Z分别为 11-36;
% 京 津 沪 渝 港 澳 吉 辽 鲁 豫 冀 鄂 湘 晋 青 皖 苏
% 赣 浙 闽 粤 琼 台 陕 甘 云 川 贵 黑 藏 蒙 桂 新 宁
% 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
% 60 61 62 63 64 65 66 67 68 69 70
subBw2 = zeros(40, 20);
num = 1; % 车牌位数
for i = 1:7
ii = int2str(i); % 将整型数据转换为字符串型数据
word = imread([ii,'.jpg']); % 读取之前分割出的字符的图片
segBw2 = imresize(word, [40,20], 'nearest'); % 调整图片的大小
segBw2 = im2bw(segBw2, 0.5); % 图像二值化
if i == 1 % 字符第一位为汉字,定位汉字所在字段
kMin = 37;
kMax = 44;
elseif i == 2 % 第二位为英文字母,定位字母所在字段
kMin = 11;
kMax = 36;
elseif i >= 3 % 第三位开始就是数字了,定位数字所在字段
kMin = 1;
kMax = 36;
end
l = 1;
for k = kMin : kMax
fname = strcat('字符模板\',liccode(k),'.jpg'); % 根据字符库找到图片模板
samBw2 = imread(fname); % 读取模板库中的图片
samBw2 = im2bw(samBw2, 0.5); % 图像二值化
% 将待识别图片与模板图片做差
for i1 = 1:40
for j1 = 1:20
subBw2(i1, j1) = segBw2(i1, j1) - samBw2(i1 ,j1);
end
end
% 统计两幅图片不同点的个数,并保存下来
Dmax = 0;
for i2 = 1:40
for j2 = 1:20
if subBw2(i2, j2) ~= 0
Dmax = Dmax + 1;
end
end
end
error(l) = Dmax;
l = l + 1;
end
% 找到图片差别最少的图像
errorMin = min(error);
findc = find(error == errorMin);
% error
% findc
% 根据字库,对应到识别的字符
Code(num*2 - 1) = liccode(findc(1) + kMin - 1);
Code(num*2) = ' ';
num = num + 1;
end
% 显示识别结果
disp(Code);
msgbox(Code,'识别出的
没有合适的资源?快使用搜索试试~ 我知道了~
matlab设计车牌识别系统设计实现.zip
共57个文件
jpg:53个
m:3个
p:1个
需积分: 0 1 下载量 195 浏览量
2024-08-03
17:13:44
上传
评论
收藏 721KB ZIP 举报
温馨提示
MATLAB可以用于车牌识别的流程如下: 1. 图像预处理:首先,加载车牌图像并对其进行预处理。可以使用MATLAB提供的图像处理函数进行图像灰度化、图像增强、图像二值化等操作,以提高车牌图像的质量。 2. 车牌定位:使用图像处理算法或机器学习算法在预处理后的图像中进行车牌定位。这可以通过检测车牌的形状、颜色、纹理等特征进行。 3. 字符分割:将定位到的车牌图像进行字符分割,将每个字符分割为单独的图像。可以使用MATLAB的图像处理函数进行字符分割,如字符二值化、字符定位等。 4. 字符识别:对每个字符图像进行特征提取和分类,以实现字符识别。可以使用MATLAB的机器学习工具箱来训练字符分类器,如支持向量机、神经网络等。 5. 结果输出:根据字符识别的结果,将识别出的字符进行组合,得到最终的车牌号码。可以使用MATLAB的图像处理函数将字符图像组合起来,生成最终的识别结果。 需要注意的是,车牌识别是一个复杂的任务,可能涉及到多个图像处理和机器学习的算法。此外,车牌的种类和样式在不同的国家和地区可能有所不同,识别算法也需要相应的调整和修改。具体的实现方法和效果需要根据实际情况
资源推荐
资源详情
资源评论
收起资源包目录
matlab设计车牌识别系统设计实现.zip (57个子文件)
matlab设计车牌识别系统设计实现
2.jpg 559B
6.jpg 646B
1.jpg 918B
main.m 8KB
5.jpg 626B
my_imsplit.m 705B
mainfc.p 202B
car.jpg 1.45MB
getword.m 2KB
3.jpg 656B
7.jpg 622B
车牌图像.jpg 24KB
4.jpg 649B
字符模板
Y.jpg 668B
辽.jpg 14KB
C.jpg 771B
苏.jpg 824B
2.jpg 12KB
E.jpg 12KB
Z.jpg 12KB
N.jpg 12KB
贵.jpg 898B
k.jpg 764B
6.jpg 797B
S.jpg 12KB
M.jpg 772B
R.jpg 12KB
1.jpg 482B
L.jpg 598B
J.jpg 566B
B.jpg 884B
F.jpg 11KB
京.jpg 890B
P.jpg 656B
5.jpg 12KB
0.jpg 660B
T.jpg 11KB
浙.jpg 787B
A.jpg 806B
G.jpg 12KB
8.jpg 789B
陕.jpg 867B
D.jpg 662B
X.jpg 797B
W.jpg 12KB
U.jpg 12KB
I.jpg 11KB
Q.jpg 828B
3.jpg 793B
鲁.jpg 858B
7.jpg 583B
O.jpg 12KB
H.jpg 439B
V.jpg 793B
9.jpg 778B
豫.jpg 918B
4.jpg 12KB
共 57 条
- 1
资源评论
MATLAB管家matlab674
- 粉丝: 1298
- 资源: 178
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于OpenCV与Spark的人脸识别样例源代码(期末大作业#&课程设计)
- C#联合halcon开发的通用视觉框架,可供初学者使用
- 上市公司-供应链金融水平数据集(2000-2023年).xlsx
- 台达DVP PLC与3台西门子V20变频器通讯程序 台达PLC与3台西门子变频器通讯,可靠稳定,同时解决西门子变频器断电重启后
- 节日及民间故事推广小程序
- 探索Web开发:获取教程、项目和试题的最佳资源.zip
- HASPUserSetup.exe 版本更新记录与常见问题解决方法
- 软件工程专业课程设计-基于Hadoop与Electron的京东商品评论词云统计系统源码+文档说明
- 基于Python+OpenCV-Python+PyQt5实现的基础的图像检索源代码(大作业&课设)
- windows update 病毒
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功