下载 >  开发技术 >  C > In-Wheel Motors

In-Wheel Motors

看看 如果 应用轮毂电机 这是个 很好的应用方向,必须解决很多实际的问题
2018-04-15 上传大小:3.79MB
想读
分享
收藏 举报
Electric Motors and Drives (Austin)

电机学中的圣经,说实话外文讲的浅显易懂,确实值得借鉴

立即下载
electric motors and drives

motors and drives, english version, basic principles of motors

立即下载
line-start motors

Analysis of irreversible magnet in line-start motors based on the finite-element method

立即下载
HANDBOOK OF ELECTRIC MOTORS

ELECTRIC MOTORS ( HANDBOOKOFELECTRICMOTORS.PDF )

立即下载
permanent magnet synchronous and brushless dc motor drives

关于永磁同步电机及无刷直流电机设计与驱动的书,内容丰富,2009年出版,内容较新

立即下载
Control of Stepping Motors Tutorial

Control of Stepping Motors Tutorial

立即下载
Running Small Motors with PIC Microcontrollers.pdf )

RUNNING SMALL MOTORS WITH PIC® MICROCONTROLLERS

立即下载
Catalog_PM21-SIMOTION_SINAMICS_Motors_Prod_Machines

Catalog PM21 SIMOTION SINAMICS Motors

立即下载
Induction versus permanent magnet motors

Induction versus permanent magnet motors

立即下载
Control of Induction motors

More than half of the total electrical energy produced in developed coun- tries is converted into mechanical energy in electric motors, freeing the society from the tedious burden of physical labor. Among many types of the motors, three-phase induction machines still enjoy the same unparalleled popularity as they did a century ago. At least 90% of industrial drive systems employ induction motors.

立即下载
Design of brushless permanent-magnet motors

名称 Design of Brushless Permanent-Magnet Motors Monographs in Electrical and Electronic Engineering第 第 37 卷 卷 Oxford science publications Magna Physics publications 作者 J. R. Hendershot, Timothy John Eastham Miller 版本 插图版 出版商 Magna Pysics Pub., 1994 ISBN 1881855031, 9781881855033 页数 536 页

立即下载
PMDC motors design handbook

He has provided us with a design textbook which completely covers the topic with full details on every aspect of the understanding and design of permanent documents the complete design of these types of motor

立即下载
柯蒂斯控制器1232E用户手册

Models 1232E/34E/36E/38E and 1232SE/34SE/36SE Enhanced AC Controllers for Induction Motors and Surface Permanent Magnet Motors

立即下载
Switched Reluctance Motor Drives(开关磁阻电机)

书名:Switched Reluctance Motor Drives: Modeling,Simulation, Analysis, Design, and Applications 作者:R. Krishnan, Virginia Tech 出版社:CRC PRESS 目录: 1.1 Introduction 1.2 Background 1.3 Elementary Operation of the Switched Reluctance Motor 1.4 Principle of Operation of the Switched Reluctance Motor 1.5 Deriv ation of the Relationship between Inductance and Rotor Position 1.6 Equiv alent Circuit 1.7 SRM Configurations 1.7.1 Rotary SRM 1.7.2 Single-Phase SRM 1.8 Linear Switched Reluctance Machines 1.8.1 Introduction 1.8.2 Machine Topology and Elementary Operation of LSRM s References Chapter 2 Steady-State Performance and Analytic Deriv ation of SRM Characteristics 2.1 Introduction 2.2 Data for Performance Computatio n 2.3 Analytic Method for the Computation of Motor Flux Linkages 2.3.1 Method of Inductance Calculation 2.3.1.1 Flux Density Evaluatio n 2.3.1.2 mmf E valuation 2.3.1.3 Calculation of Reluctance 2.3.1.4 Assumption s 2.3.2 Unaligned Inductance 2.3.2.1 Flux Path 1 2.3.2.1.1 Rotor Back Iron 2.3.2.1.2 Stator Pole 2.3.2.1.3 Stator Back Iron 2.3.2.2 Flux Path 2 2.3.2.2.1 Air Ga p 2.3.2.2.2 Stator Pole 2.3.2.2.3 Rotor Pol e 2.3.2.2.4 Rotor Back Iron 2.3.2.2.5 Stator Back Iron 2.3.2.3 Flux Path 3 2.3.2.3.1 Air Ga p 2.3.2.3.2 Stator Pole 2.3.2.3.3 Rotor Pol e 2.3.2.3.4 Rotor Back Iron 2.3.2.3.5 Stator Back Iron 2.3.2.4 Flux Path 4 2.3.2.4.1 Air Ga p 2.3.2.4.2 Stator Pole 2.3.2.4.3 Rotor Pol e 2.3.2.4.4 Rotor Back Iron 2.3.2.4.5 Stator Back Iron 2.3.2.5 Flux Path 5 2.3.2.5.1 Air Ga p 2.3.2.5.2 Stator Pole 2.3.2.5.3 Rotor Pol e 2.3.2.5.4 Rotor Back Iron 2.3.2.5.5 Stator Back Iron 2.3.2.6 Flux Path 6 2.3.2.6.1 Air Ga p 2.3.2.6.2 Stator Pole 2.3.2.6.3 Stator Back Iron 2.3.2.6.4 Magnetic Equiv alent Circuit 2.3.2.7 Flux Path 7 2.3.2.7.1 Unaligned Inductance 2.3.3 Aligned Inductance 2.3.3.1 Flux Path 1 2.3.3.2 Flux Path 7 2.3.4 Results and Comparison 2.3.5 Performance Evaluatio n 2.3.6 Inductances at Intermediate Positions 2.3.6.1 Region 1 2.3.6.1.1 Flux Path 1 2.3.6.1.2 Flux Path 2 2.3.6.1.3 Flux Path 3 2.3.6.1.4 Flux Path 4 2.3.6.1.5 Flux Path 5 2.3.6.1.6 Flux Path 6 2.3.6.1.7 Inductance in R egion 1 2.3.6.2 Region 2 2.3.6.2.1 Flux Path 1 2.3.6.2.2 Flux Path 2 2.3.6.2.3 Flux Path 3 2.3.6.2.4 Flux Path 4 2.3.6.2.5 Flux Path 5 2.3.6.2.6 Inductance Evaluation 2.4 Secondary Flux Paths 2.5 Computation of Inductance References Chapter 3 Design of SRM 3.1 Introduction 3.2 Deriv ation of Output Equation 3.3 Selection of Dimension s 3.3.1 Diameter and Length 3.3.2 Number of Turns 3.3.3 Thermal Consideratio n 3.3.3.1 Stator Copper Losses 3.3.3.2 Approximate Evaluation of T r 3.3.3.3 Approximate Evaluation of T f 3.3.4 Stator Back Iron Thicknes s 3.3.5 Stator Coil Dimensions 3.3.6 Stator Pole Height 3.3.7 Outer Diameter of Stator Lamination 3.3.8 Rotor Back Iron Thicknes s 3.3.9 Rotor Pole Height 3.3.10 Estimation of Core Losses 3.3.11 Flux Density Waveforms 3.3.11.1 Stator 3.3.11.2 Rotor 3.3.11.3 Core Losses 3.3.11.4 Calculation Procedure 3.4 Design Verificatio n 3.5 Operational Limi t 3.6 Selection of Number of Phases 3.7 Selection of Poles 3.8 Ratio of Pole Arc to Pole Pitch 3.9 Selection of Pole Arcs 3.9.1 Minimum Rotor and Stator Pole Arcs to Achi eve Self-Startin g 3.9.2 Overlap Angle (θ 0 ) Limits 3.9.3 Upper Limit on β r 3.9.4 Computation of Turn-Off Angle 3.9.5 Selection of Pole Bas e 3.10 Effect of Air Gap on Torqu e 3.11 Measurement of Inductance 3.12 Calculation of Torque 3.12.1 Average Torque 3.12.2 Instantaneous Torque 3.13 Design of the Linear Switched Reluctance Machine 3.13.1 Introduction 3.13.2 LSRM Con figurations 3.13.2.1 Three-Phase LSRM with Active Stator and Passive Translator Structure 3.13.2.2 Four-Phase LSRM with Active Translator and Passi Stator Structur e 3.13.3 LSRM Design 3.13.3.1 Specifications of the LSRM 3.13.3.2 Design of Rotary SRM 3.13.3.3 Conversion of RSRM Dimensions to LSRM Dimension s 3.13.3.4 Example 1: Design of Three-Phase LSRM with Ac Stator and Passive Translator 3.13.3.5 Example 2: Four-Phase LSRM Prototype with Activ Translator and Passive Stator 3.13.4 Design Verificatio n 3.13.4.1 Analytical Inductance Calculation 3.13.4.1.1 Aligned Inductance Calculation 3.13.4.1.2 Intermediate Inductance Calculation — One-Third Shift of Translator from Fully Aligned Position 3.13.4.1.3 Intermediate Inductance Calculation — Two-Thirds Shifting of Translator from Fully Aligned Position 3.13.4.1.4 Fully Unaligned Inductance Calculation 3.13.4.2 Analytical Force Calculation 3.13.4.3 Finite Element Analysis Verification 3.13.4.4 Experimental Setup for Measurements 3.13.4.4.1 Inductance Measurement 3.13.4.4.2 Force Measurement 3.13.4.5 Results and Comparison Appendix 3A: Calculation of Air gap Permeance Parallelepiped Semicircular Cylinder Half Annulus Spherical Quadrant Intermediate Position R egion II MMF per Path Mean Path Length and Mean Cross-Section Area Unaligned Position R egion MMF per Path Mean Path Length and Mean Cross-Section Area References Chapter 4 Converters for SRM Dr ives 4.1 Converter Con figurations 4.1.1 Asymmetric Bridge Converte r 4.1.1.1 Switching Strategy 4.1.1.2 Device Rating s 4.1.1.3 Switch rms Curren t 4.1.1.4 Diode Average Curren t 4.1.1.5 Selection of D evice Current Ratings 4.1.2 Asymmetric Converter Variation 4.1.3 Energy Rec ov ery Snubber 4.2 Single-Switch-pe r-Phase Converter s 4.2.1 R-Dump 4.2.1.1 Device Current Ratings 4.2.1.2 Switch Curren t 4.2.1.3 Diode Current 4.2.1.4 Power Rating of Dump Resistor 4.2.2 Bi filar Type 4.2.3 Split dc Supply Co nverte r 4.2.4 q Switches and 2q Diodes 4.2.5 q Switch and 2q Diode Configuration with Independent Phase Current Control 4.3 (q + 1) Switch and Diode Configurations 4.3.1 Configuration with Equal Sharin g 4.3.2 C-Dump Co nverte r 4.3.2.1 Modes of Operation and Mode Equations 4.3.2.1.1 Mode 1: T 1 On and T r Off 4.3.2.1.2 Modes 2 and 3: T 1 and T r Both On and Then Off 4.3.2.1.3 Mode 4: Phase Current Commutation 4.3.2.1.4 Mode 5: T 1 Off, T r On 4.3.2.2 Design Procedur e 4.3.2.2.1 Device Rating s 4.3.2.2.2 Dump Capacitor Rating 4.3.2.2.3 Incremental Current in Machine Phase s 4.3.2.2.4 Switching Frequen cy 4.3.2.2.5 Rating of Lr 4.3.2.2.6 Recov ery Current Spherical Shell Quadrant Total Permeance Value of the Air gap Flux Paths Appendix 3B: Flux Paths and Associated Variables in the Stator and Translator Aligned Position R egion MMF per Path Mean Path Length and Mean Cross-Section Area Intermediate Position R egion I MMF Per Path Mean Path Length and Mean Cross-Section Area 4.3.2.2.7 Voltage and Current Control in Ene rgy Recov ery Circuits 4.3.3 C-Dump with Freewheeling 4.3.4 One Common Switch Con figuration 4.3.5 Minimum Switch Topology with Variable dc Lin k 4.3.5.1 Operational Modes of the Co nverter Circuit 4.3.5.2 Design Considerations of the Chopper Circuit Component s 4.3.5.3 Performance Constraints and Design of the Co nverte r 4.3.5.3.1 Current Commutation Time 4.3.5.3.2 Voltage Rise in the dc Source Capacitor 4.3.5.3.3 Results and Analysis 4.3.5.4 Merits and Demerits of the Converter 4.3.5.5 Variable dc Link Voltage with Buck-Boost Converter Topology 4.3.6 (1.5 q) Switches and Diodes Configuration 4.4 Comparison of Some Power Co nverters 4.5 Two-Stage P ower Co nverter 4.5.1 Front-End Co nverter 4.5.2 Machine-Side Converter 4.5.3 Operation of the Scheme 4.6 Resonant Converter Circuit s References Chapter 5 Control of SRM Dr ive 5.1 Introduction 5.2 Control Principle 5.3 Closed-Loop, Speed-Controlled SRM Drive 5.3.1 Design Example 5.3.2 Solution 5.3.3 Current Loo p 5.3.4 Current Comparator 5.3.5 Carrier Signal 5.3.6 Incorporation of Rotor Position Information 5.3.7 Speed Loop 5.4 Design of Current Controllers 5.4.1 Voltage and Torque Equations for the SRM 5.4.2 Deriv ation of the SRM Small-Signal Model 5.4.3 System Block Diagra m 5.4.4 Design of Current Controller 5.4.4.1 Example 1: 5-hp SRM Drive System 5.4.4.2 Current Controller Design 5.4.4.3 Nonlinear Dynamic Simulation of Current Loop 5.4.5 Linearized Decoupling Current Controller Neglecting Mutual Inductance 5.4.6 Design of Current Controller Including Mutual Coupling Effect s 5.5 Flux Linkage Controller 5.5.1 Machine without Mutual Coupling 5.6 Torque Control 5.6.1 Methods of Torque Control 5.6.1.1 Torque Distri bution Neglecting Mutual Inductance and Saturation 5.6.1.2 Torque Distri bution Including Mutual Inductance and Neglecting Saturation 5.6.1.3 Torque Distri bution Including Mutual Inductance and Saturation 5.6.2 Simulation Results 5.6.3 Implementation of Torque Controller 5.7 Design of the Speed Controller 5.7.1 Features of the Symmetric Optimum Function 5.7.2 Simulation Results References Chapter 6 Modeling and Simulation of the SRM Drive Syste m 6.1 Introduction 6.2 Modeling 6.2.1 Machine Model 6.2.1.1 Per Phase Mode l 6.2.1.2 Representation of Machine Magnetic Characteristics 6.2.1.3 Method 1 6.2.1.4 Method 2 6.2.1.5 Torque Representation and Its Computatio n 6.2.1.6 Mutual Inductance 6.2.2 Converter 6.2.2.1 Effect of Source Impedance and dc Link Filter 6.2.2.2 Device- Transient Model 6.2.3 Load 6.2.4 Controller 6.2.4.1 Speed Controller 6.2.4.2 Torque Controller 6.2.4.3 Current Command Controller 6.2.4.4 Current Controller 6.2.4.4.1 PWM Current Controlle r 6.2.4.4.2 Hysteresis Current Controller 6.3 Simulation 6.3.1 Simulation Results References Chapter 7 Acoustic Noise and Its Control in SRMs 7.1 Introduction 7.2 Sources of Acoustic Noise in Electrical Machines 7.2.1 Noise Sources 7.2.1.1 Magnetic Sources of Noise 7.2.1.2 Mechanical Sources of Noise 7.2.1.2.1 Self 7.2.1.2.2 Load-Induced 7.2.1.2.3 Auxiliaries 7.2.1.2.4 Rotor Unbalance 7.2.1.3 Aerodynamic Sources of Noise 7.2.1.4 Electronic Sources of Nois e 7.3 Noise Mitigation 7.3.1 Magnetic Noise Mitigatio n 7.3.2 Mechanical Noise Mitigatio n 7.3.3 Aerodynamic Noise Mitigation 7.3.4 Electronic Noise Miti gatio n 7.3.5 Active Noise-Cancellation Technique s 7.3.5.1 Two-Stage Commutation Method 7.3.5.2 Voltage-Smoothing Method 7.3.5.3 Three-Stage Commutation Metho d 7.3.5.4 Extended Freewheeling Method 7.3.5.5 Disadvantages of Noise-Cancellation Techniques 7.4 Qualitative Design Measures to Reduce Noise 7.4.1 Machine Design Considerations 7.4.2 Torque-Smoothing Control 7.4.3 Converters with a High Degree of Freedom 7.4.4 Varying Input Voltage 7.5 Measurement of Acoustic Noise and Vibrations 7.6 Future Direction s Appendix 7A: Deriv ation of First-Mode Frequen cy of an SRM Potential Energy Kinetic Ene rgy Natural Frequency References Chapter 8 Sensorless Operation of SRM Drives 8.1 Introduction 8.2 Current Sensing 8.2.1 Current-Sensing Methods 8.2.2 Current Sensing with Resistors 8.2.3 Drive Scheme with Current Limiter 8.3 Rotor Position Measurement and Estimation Methods 8.3.1 Sensor-Based Measurement 8.4 Sensorless Rotor Position Estimation 8.4.1 Inductance-Based Estimation 8.4.1.1 Incremental Inductance Measuremen t 8.4.1.1.1 Current Rise Time Metho d 8.4.1.1.2 Current Fall Time Method 8.4.1.2 Sensing with Inact ive Phases 8.4.1.3 Estimation Based on Constant Current/Flux Linkage s 8.4.1.4 Resonant Circuit Metho d 8.4.1.5 Synchronous Demodulation Method 8.4.1.6 Variation of the Demodulation Method 8.4.1.7 Mutual Flux Linkages Metho d 8.4.2 Direct Inductance-Sensing Methods 8.4.2.1 Current Gradient Method 8.4.2.2 Flux Linkages Estimation Method Based on Reference Position 8.4.2.3 Flux-Linkages-Based Method with Hesitation-Free Starting 8.4.3 Observer-Based Rotor Position Estimation 8.4.4 Intelligent-Control-Based Estimation 8.4.4.1 Artificial Neural Networks 8.4.4.2 Fuzzy Control Estimator 8.4.5 Sensing Coil Approach References Chapter 9 Application Considerations and Applications 9.1 Introduction 9.2 Revi ew of SRM Drive Features for Application Consideration 9.2.1 Motor 9.2.1.1 Advantage s 9.2.1.2 Disadvantages 9.2.2 Converter 9.2.2.1 Advantages 9.2.2.2 Disadvantages 9.2.3 Contro l 9.3 Applications 9.3.1 Low-Power Dr ives 9.3.2 Medium-Power Dr ives 9.3.3 High-P ower Dr ives 9.3.4 High-Speed Drives 9.4 Eme rging Application s 9.4.1 High-Volume Applications 9.4.2 Underwater Application s 9.4.3 Linear Dr ive Applications References

立即下载
Improvements in direct torque control of induction motors

Improvements in direct torque control of induction motors。。。。。。。。。。。。。。。。。

立即下载
Reluctance Torque Utility for Line-Starting Permanent Magnet Motors

Reluctance Torque Utility for Line-Starting Permanent Magnet Motors

立即下载
ASP 伺服控制器用户手册

DIGITAL SERVOAMPLIFIER Accelus Panel for BRUSHLESS/BRUSH MOTORS

立即下载
Selection of Servo motors and Drives

Selection of Servo motors and Drives, is a document for sizing electromechanical systems of Motion control

立即下载
Servo Motors and Industrial Control Theory

伺服电机和工业控制理论知识,适合了解工业控制领域人员学习

立即下载
the effect of voltage dips oninduction motors

Voltage depressions caused by faults on the system affect the performance of induction motors, in terms of the production of both transient currents and transient torques. It is often desirable to minimize the effect of the voltage dip on both the induction motor and more importantly on the process where the motor is used. In order for the user to achieve optimum protection, he must prioritize the importance of the different processes, and then choose the appropriate method to minimize the effects of voltage dips, within the constraints of the supply and budget. The worst case scenario is that of a three phase fault which occurs electrically close to the motor. It is this scenario which will be examined in this paper.

立即下载
关闭
img

spring mvc+mybatis+mysql+maven+bootstrap 整合实现增删查改简单实例.zip

资源所需积分/C币 当前拥有积分 当前拥有C币
5 0 0
点击完成任务获取下载码
输入下载码
为了良好体验,不建议使用迅雷下载
img

In-Wheel Motors

会员到期时间: 剩余下载个数: 剩余C币: 剩余积分:0
为了良好体验,不建议使用迅雷下载
VIP下载
您今日下载次数已达上限(为了良好下载体验及使用,每位用户24小时之内最多可下载20个资源)

积分不足!

资源所需积分/C币 当前拥有积分
您可以选择
开通VIP
4000万
程序员的必选
600万
绿色安全资源
现在开通
立省522元
或者
购买C币兑换积分 C币抽奖
img

资源所需积分/C币 当前拥有积分 当前拥有C币
5 4 45
为了良好体验,不建议使用迅雷下载
确认下载
img

资源所需积分/C币 当前拥有积分 当前拥有C币
5 0 0
为了良好体验,不建议使用迅雷下载
VIP和C币套餐优惠
img

资源所需积分/C币 当前拥有积分 当前拥有C币
5 4 45
您的积分不足,将扣除 10 C币
为了良好体验,不建议使用迅雷下载
确认下载
下载
您还未下载过该资源
无法举报自己的资源

兑换成功

你当前的下载分为234开始下载资源
你还不是VIP会员
开通VIP会员权限,免积分下载
立即开通

你下载资源过于频繁,请输入验证码

您因违反CSDN下载频道规则而被锁定帐户,如有疑问,请联络:webmaster@csdn.net!

举报

若举报审核通过,可返还被扣除的积分

  • 举报人:
  • 被举报人:
  • *类型:
    • *投诉人姓名:
    • *投诉人联系方式:
    • *版权证明:
  • *详细原因: