Ansys Fluent 理论指南 17.0(官方教程,高清带目录)

所需积分/C币:41 2018-09-22 16:29:26 43.57MB PDF

Ansys-Fluent-Theory-Guide 17.0,官方理论指南,提供了 Fluent 中所使用的计算模型的理论信息。高清带目录,850页,Fluent 学习者进阶必备,知其然更知其所以然。
Table of contents Using this manua................,….,,……xX 2. The Contents of the fluent Manuals 1. The Contents of this manual ...I. XXIX ··音音音非自非着音非 OX 3. Typographical Conventions....... ···B. 4. Mathematical Conventions . 5. Technical Support.....…...… ···· 1. Basic fluid flow 1.1. Overview of physical models in ansys Fluent 12. Continuity and momentum Equations.....,.,,…,…,,…,,,…,,…,…,…,……2 2.1.The Mass Conservation Equation ···········:··············:··· 中····· 1.2.2. Momentum Conservation Equations .............. 3 1.3.User- Defined scalar(UDS) Transport Equations…………..……..….…….…….…4 1.3.1. Single Phase Flow.............................................4 1.3,2. Multiphase Flow……,…,,… 看鲁 5 1.4. Periodic flows∴ 1.4.1. Overview.….6 4.2. Limitations∴ 4.3. Physics of Periodic lows………,…,…,…,…,,…,…,,…,,…,,,,7 1.4.3.1. Definition of the Periodic velocity 7 1.4,3.2. Definition of the streamwise-Periodic Pressure ...........................................................7 1.5. Swirling and Rotating Flows 8 1.5.1. Overview of Swirling and Rotating flow5......,,,…,,…,……,,………………9 1.5.1.1. Axisymmetric Flows with Swirl or Rotation.............. 1.5.1.1.1. Momentum Conservation Equation for Swirl velocity..….…………,10 1.5.1. 2. Three-Dimensional Swirling flows............ 10 1.5.1.3. Flows Requiring a moving reference frame........... 10 1.5.2. Physics of Swirling and Rotating Flows………,…,…,…,…,,…… 10 1.6. Compressible flows....................... 1.6.1. When to Use the Compressible Flow Model.….…….….….,.…,,…,…,…,,,…,… 13 1.6.2.. Physics of Compressible Flows. 1.6.2.1. Basic Equations for Compressible Flows…,…,… 1.6.2.2. The compressible form of the gas law 14 1.7. Inviscid flows 14 1.7.1. Euler Equations....... 14 1.7.1.1.The Mass Conservation Equation.................. 非······非·非· 15 1.7.1.2.Momentum Conservation Equations ……15 1.7.1.3. Energy Conservation Equation.…….….…,…….,,,……………,15 2. Flows with Moving Reference Frames ···· 17 2.1.Introduction.w.wwww.w.woow.17 2.2.F| ow in a Moving reference Frame.......….….….…….….………………,18 2.2.1. Equations for a Moving reference frame ·····:·:·· 19 2.2.1.1. Relative velocity Formulation.…..,…..,….,.….,…20 2.2.1.2. Absolute Velocity formulation ·:····4············.··.··.················· ········.··.····.::·····: 21 2.2.1.3. Relative Specification of the reference frame Motion……,…,…,…,………21 2.3. Flow in Multiple reference frames ···.·:··:·:···············::···.··········:····:.::····.······ 22 2.3.1. The multiple reference frame Model 22 2.3.1.1. Overview 22 23.1.2. Examples..,,,, ·····:·····:····:·········· 23 23.13. The mrf Interface formulation 2.3.1.3.1. Interface Treatment: Relative Velocity Formulation 44 …………… Release 17.0-O SAS /P Inc. All rights reserved. -Contains proprietary and confidential information of ansys inc and its subsidiaries and affiliates Theory guide 2.3.1.3.2. Interface Treatment: Absolute velocity Formulation………………25 23.2. The mixing Plane Model…….…..… 25 2.3.2.1. Overview∴ ···音普。·。音非音着自普·非非着·音音非普。音非着鲁自非非普自自·音音。音自。音非音音着鲁非·音音·非音 26 2.3.2.2. Rotor and stator domains 26 2323. The mixing Plane Concept..…… ·4······:········:::·················:······*·::····:······: 27 23.2.4. Choosing an Averaging Method……,…,…,…,…,,……… 28 2324.1. Area Averaging………………………………28 2.3.2.4.2. Mass Averaging ··········:········· 28 2.3.24.3. Mixed-Out Averaging…… .29 23.25. Mixing Plane algorithm of ANSyS Fluent….,.,……………29 2.3.2.6. Mass Conservation………… 30 2,3.2.7 Swirl Conservation 30 2.3.2.8. Total Enthalpy Conservation 31 3. Flows Using Sliding and Dynamic Meshes. ...................................................................33 3. 1. Introduction 33 3. 2. Dynamic Mesh Theory................................... 34 3.2.1. Conservation Equations ∴35 322.sDOF(6DOF) Solver Theory....……136 3.3. Sliding Mesh Theory………………37 4. Turbulence.……………………….39 4.1. Underlying Principles of Turbulence Modeling 39 4.1.1. Reynolds(Ensemble) Averaging 自自非自非·非自。音自自非鲁自指d鲁自自自自·,自音指着鲁曲 39 4.1.2. Filtered Navier-Stokes Equations....,.,.,.,.,,.,,….,…,…,…,……,…,40 4.1.3. Hybrid RANS-LES Formulations 41 4.1.4. Boussinesq Approach vs. Reynolds Stress Transport Models 41 4.2. Spalart-Allmaras model 42 4.2.1. Overview D。垂 42 4.2. 2 Transport Equation for the Spalart-Allmaras Model 43 4.2.3. Modeling the turbulent viscosity .............. 43 4.2. 4 Modeling the turbulent Production 43 4.2.5. Modeling the turbulent Destruction 鲁非音.。自音。非自着。非·自非 44 4.2.6. Model constants 45 4.2.7. Wall Boundary Conditions 着·,·。看 45 4.28. Convective Heat and Mass Transfer Modeling…………,…,…,…,…,…,,…,….,…,45 4.3. Standard RNG, and realizable k-E Models 45 4.3.1. Standard k-e Model 46 4.3.1.1. Overview.… 46 4.3.1.2. Transport Equations for the Standard k< E Model…….….….…….…………,46 4.3.1.3. Modeling the turbulent Viscosity ..........47 4.3.1.4. Model constants∴……47 4.3.2. RNG k-E Model .47 4.3.2.1. Overview∴….47 4.3.2.2. Transport Equations for the RNG k- Model 48 43.23 Modeling the Effective viscosity......,.,…,,,…,……,……,48 43.2. 4 RNG Swirl Modification ,49 4.3.2.5. Calculating the Inverse effective prandtl Numbers.….,.,,,…,…,………,49 4.326.TheR- E Term in the e equation..,…,… 49 43.27 Model constants ,wwwwwwwwwmww..w 50 4.3.3. Realizable k-E model :·····:·········:·*····:··········:····:····:··········:············ 50 4.3.3.1.◎ verviev.,,, 50 4.3.3. 2 Transport Equations for the realizable k-e Model... 51 4.3.3.3. Modeling the turbulent viscosⅰty…. 52 Release 17.0-O SAS /P Inc. All rights reserved. -Contains proprietary and confidential information of ansys inc and its subsidiaries and affiliates Theory Guide 4.3.3.4. Model constants,……53 4.3.4. Modeling turbulent production in the k-s Models 53 43.5. Effects of Buoyancy on turbulence in the kε Models………….…..……………,53 4.3.6. Effects of Compressibility on turbulence in the k-ε Models………………………….154 4.3.7. Convective heat and mass transfer modeling in the k-g Models ·····:..·:·········4···:·····:·:: 55 4.4. Standard, bsl and sst k-w Models 56 4.4.1. Standard k-w Model 57 4.4.1.1. Overview 57 4.4.1.2. Transport Equations for the Standard k-u: Model......... 57 4.4.1.3. Modeling the Effective Diffusivity…………,…,…,…,…,…,…,… ········; ······:···:·:·· 57 4.4.1.3.1. LoW-Reynolds Number Correction 58 4.4.1.4. Modeling the turbulence production 58 4.4.1.4.1. Production of k 58 4.4.1.4.2. Production ofω………….58 4.4.1.5. Modeling the turbulence dissipatio∩…… 垂音·D要垂看.垂垂 ,垂垂 59 4.4.1.5.1. Dissipation of k..........59 4.4.1.5.2. Dissipation of ······ 59 4.4.1.5.3. Compressibility Effects ........ ···.···:······:········4······:·····:·····.·:·····: 60 4.4.1.6. Model constants 4.4.2. Baseline(bsl)k-w Model 60 4.4.2.1 Overview D着 4.4.2.2. Transport Equations for the bsl k-w Model 音非自“音D鲁自番自鲁非自曲非自 音鲁;鲁D自 6 4.4.2.3. Modeling the Effective Diffusivity ·.···:·········::·:··:·.:······:··········:·:::··:··:· 61 4.4.2.4. Modeling the turbulence Production ..... ·· 61 4.4.2.4.1. Production of k 61 4.4.2.4.2. Production of w 62 4.4.2.5. Modeling the turbulence dissipation................. 62 4.4.2.5.1. Dissipation of k 62 4.42.52. Dissipation of w…......... 62 4.4.2.6. Cross-Diffusion modification 63 4.4.2.7. Model constants wwwwwwwwwwwwwwwom 63 4.4.3. Shear-Stress Transport(SST)k-w Model 63 4.4.3.1.Overview ······················4·········.···:···········.················:·······4··· 63 4.4.3.2. Modeling the Turbulent Viscosity……………………………263 4.4.3.3. Model constants 63 4.4.4. Turbulence Damping 64 4.4.5. Wall Boundary Conditions.............. .·a:· 65 4.5.k-k|-ω Transition model…65 45.1. Overview 65 4.5. 2 Transport Equations for the k-kl-w Model 65 4.5.2.1. Model Constants ·+4··+·+...+··+··+.4++···+· 68 4.6.Transitionsstmodelwwwwwwwwwwwwwwww.68 4.6.1. Overview 69 4.6.2. Transport Equations for the transition SST Mod 69 4.6.2.1. Separation- Induced Transition Correction 71 4.6.2.2. Coupling the transition Model and SsT transport equations. ..................................72 4.6.2.3. Transition SST and rough Walls 72 4.6.3 Mesh Requirements 73 464. Specifying Inlet Turbulence Levels……………………………………,176 4.7. Intermittency Transition Mod 77 4.7.1. Overview 77 4.7. 2 Transport Equations for the Intermittency transition model...................... 78 Release 17.0-O SAS /P Inc. All rights reserved. -Contains proprietary and confidential information of ansys inc and its subsidiaries and affiliates Theory guide 4.73 Coupling with the other Models...,....,…,…,,…,…,…………80 4.7.4. Intermittency Transition Model and Rough Walls 带看 ··:···· 80 4.8.TheV2 F Model,…………….80 4.9. Reynolds Stress Model(RSM)…… 81 4.9.1. Overview,…, ···:·············;····:······:············· 81 4.9.2. Reynolds Stress Transport Equations……,…,…,………………,……!82 4.9.3. Modeling turbulent Diffusive Transport 83 49.4. Modeling the Pressure-Strain Term…… ······ 83 49.41 Linear Pressure-Strain model 83 4.9.4.2. Low-Re modifications to the linear pressure-Strain model 84 4.9.4.3. Quadratic Pressure-Strain Model 85 4944.5 tress-Omega Model............….….………85 4.9.4.5. Stress-BSL Model 87 4.9.5. Effects of Buoyancy on turbulence…,.,,,,,…,…,,………87 4.9.6. Modeling the Turbulence Kinetic Energy……… 87 4.9.7. Modeling the dissipation ra 88 4.9.8. Modeling the Turbulent Viscosity 88 4.9.9. Wall Boundary Conditions.... ············:·.·······:····:·.····:········:·.·.·····.:··:······:····:·:····4 89 49.10. Convective Heat and Mass Transfer Modeling……………………………………289 4.10.5 cale-Adaptive Simulation(SAS) Model....,.….,….…..90 4.10.1. Overview 0 4.10.2. Transport Equations for the Sst-SAS Model....................................91 4.10.3 SAS with Other w-Based Turbulence models 93 4.1 1. Detached eddy simulation(DeS)................... 93 4.11.1. Overview∴ 93 4.11.2. DES with the spalart-Allmaras model 94 4.11.3. DES with the realizable k-e Model 94 4.11.4. DES with the bsl or sst k-w Model 95 4.11.5.DESwiththetransitionsstmodelwwwwwww.96 4.11.6. Improved Delayed Detached Eddy Simulation(IDDES) 96 4.116.1. Overview of iddes 96 4.11.6.2. IDDES Model formulation 97 4.12. Shielded Detached Eddy Simulation(SDES)................. 97 4.12.1. Shielding Function…….,…,…,…,…,…,…,, 98 4.122. LES Mode of sdes ………99 4.13. Stress- Blended Eddy Simulation(SBES)…………………… 100 4.13.1. Stress blending............... …101 4.13.2. SDES and SBES Example……,…,…,…,…,…,,,…,.,101 4.14. Large Eddy simulation(LES)Model .102 4.14.1. Overview∴ ·非非非··非。。。章非非 102 4.14.2. Subgrid-Scale models 4103 4.14.21. Smagorinsky-Lilly Model.....….…..………,104 4.14.2.2. Dynamic Smagorinsky-Lilly Model 105 4.14.2.3. Wall-Adapting Local Eddy-Viscosity (WALE)Model..... 06 4.14.2. 4 Algebraic Wall-Modeled LES Model (WileS) …106 4.14.2.4.1. Algebraic WMLES Model Formulation........... 07 4. 14.2.4.1.1. Reynolds Number Scaling 107 4.14.2.4.2. Algebraic WMles S-Omega model formulation..................108 4._14.2.5. Dynamic Kinetic Energy Subgrid- Scale model………… 109 414.3. nlet Boundary Conditions for the LES Model....….….….….….…………,109 4.143.1. Vortex Method 110 4.14.3.2. Spectral synthesizer 111 Release 17.0-O SAS /P Inc. All rights reserved. -Contains proprietary and confidential information of ansys inc and its subsidiaries and affiliates Theory Guide 4.15. Embedded Large Eddy Simulation 12 4.15.1. Overview∴ 112 4.15. 2 Selecting a Model 非音·番非·。音·音音。。自音非自自着·普··。音非音音番非音非·非非番自·。非音音音。音音音非··D非音···非自音非音。看非音·非·自音,自布非音非音 12 4.153 Interfaces Treatment 113 4.15.3.1.Rans-lEsInterfacewwwwwwwww.wwwwww113 4.15.3.2. LES-RANS Interface 13 4.153 3 Internal interface Without les Zone 114 4.15.3.4. Grid generatⅰ on guidelines.……,114 4.16. Near-Wall Treatments for Wall-Bounded turbulent flows .gggggmggnggoggommoo.. 115 4.16.1. Overview∴ ·····;······;···:4·:·····:·.·:中.····:··:···:··中a·:····· 115 4.16.1.1. Wall Functions vs Near-Wall Model · .。。4 .116 4.16.1.2.Wall「 unctions,…………118 4.16.2. Standard wa‖!「 unctions…. ·····t 18 4.16.2.1. Momentum∴……118 4.1622. Energy… 1·D看看垂要D垂 9 4.1623.5 pecies…...., ……………………121 4.16.2.4 Turbulence 21 4.16.3. Scalable wa‖丨 Functions∴ 22 4.16.4. Non-Equilibrium Wall Functions .·······:····:··.··::····:····:···:······:······:····:·:·:···· 122 4.16.4.1. Standard Wall Functions VS Non-Equilibrium Wall Functions............. 124 4.164.2. Limitations of the wal! Function Approach.……,…,…,…,,…,…,………,124 4.16.5. Enhanced Wall Treatment E-Equation(EWT-a 非着鲁非。自。。自。自非音d非自非D自非。自由4自非。鲁。非D自非非 ∴124 4.16.51.TWo- Layer Model for Enhanced Wall Treatment……,…,…,…,,…,,… 125 4.16.5.2. Enhanced Wall Treatment for Momentum and Energy equations .............126 4.16.6. Menter-Lechner e-Equation (ML-E) 128 4.16.6.1. Momentum Equations..........….….…..….130 4.16.6.2. k-e Turbulence models 130 4.166.3. Iteration Improvements………… 30 4.16.7. y+-Insensitive Wall Treatment w-Equation ... ········:··:··:··:·:···:·····;·中·4 130 4.16. 8 User-Defined wall functions 131 4.16.9. LES Near-Wall Treatment 131 4.17. Curvature Correction for the spalart-Allmaras and Two-Equation Models 131 4.18. Production Limiters for Two-Equation Models. .............................................................................133 4.19. Definiⅰ tion of turbulence scales∴…4135 4.19.1.RANS and Hybrid (SAS, DES, and SDES)Turbulence Models......................135 4. 19.2. Large Eddy Simulation(LES)Models 4135 4.19.3. Stress- blended eddy simulation(SBES)Model................................. 136 5. Heat Transfer ····:·····:··:··::···:·················· 137 5.1. Introduction *·······“··································*···“··········“····“····“······· 37 52. Modeling Conductive and Convective Heat Transfer………,…,…,…,…,…,…,………,….,137 5.2.1. Heat Transfer Theory. ..........................................137 52.1.1. The energy equation..............,,,… 137 5.2.1. 2 The Energy Equation in Moving Reference Frames 138 5.2.1.3. The energy equation for the non- Premiⅸ xed com bustion model………138 5.2.1.4. Inclusion of Pressure Work and Kinetic energy terms 139 5.2.1.5. Inclusion of the Viscous Dissipation Terms..................... 39 5.2.1.6. Inclusion of the species diffusion Term 139 5.2.1.7. Energy Sources Due to Reaction...,.,.,.,.,,.,….…,,……,140 5.2.1.8. Energy Sources Due To Radiation………,…,…,………,140 5.2.1.9. Energy Source Due To Joule Heating......,…,…,…,………,……,……,140 5.2.1.10. Interphase Energy Sources………,…,…,…,…,…,…,…,……,,140 52.1.11. Energy equation in Solid regions......….………..140 Release 17.0-O SAS /P Inc. All rights reserved. -Contains proprietary and confidential information of ansys inc and its subsidiaries and affiliates Theory guide 52.1.12. Anisotropic Conductivity in Solids….,.,.,…,…,…,…,…,……,…,……,141 5.2.1.13. Diffusion at Inlets 141 522. Natural Convection and buoyancy- Driven Flows Theory…,,,………141 5.3. Modeling radiation……… ·················:···:·:···:·····:··· 142 5.3.1.0 verview and limiⅰ tations∴…142 5.3.1.1. Advantages and limitations of the dtrm 143 5.3.1.2. Advantages and Limitations of the p-1 Model................................143 5.3.1.3. Advantages and Limitations of the rosseland model……….…….……………….144 5.3.1.4. Advantages and limitations of the do model 144 5.3.1.5. Advantages and limitations of the s2S Model. .................................................144 5.3.2. Radiative transfer equation 145 533P-1 Radiation Model Theory......,..,…,….…….…146 5.3.3.1.The p-1 Model equations 146 5.3.3.2. Anisotropic Scattering...........,…,…,…,… 48 5.333 Particulate Effects in the p-1 Model 148 53.34. Boundary Condition Treatment for the p1 Model at walls….…..……………,149 5.3.3.5. Boundary Condition Treatment for the p-1 Model at flow Inlets and Exits........150 5.3.4. Rosseland Radiation Model Theory .......................................................................150 5.3.4.1. The rosseland Model equations……,…,,…,…,…,….,…….,…,,…,,2150 534.2. Anisotropic Scattering.......,.,.,.,………………,151 5.3.4.3. Boundary Condition Treatment at Walls 151 5.3.4.4. Boundary Condition Treatment at Flow Inlets and Exits.......................151 5.3.5. Discrete transfer radiation model(DTRM) Theory…………,……………151 5.3.5.1.The dTRM Equations 151 5.3.5.2. Ray Tracing……………,…,…,…,,,…,, 非非··非非·非非非鲁·非非非非着章,··非·非非章非 52 5.3.5.3. Clustering..........152 5354 Boundary Condition Treatment for the dtrm at wa|ls…………………153 5.3.5.5. Boundary Condition Treatment for the dtRM at Flow Inlets and Exits 53 5.3.6.Discrete Ordinates(Do)Radiation Model Theory ....................................................154 5.3.6.1. The Do Model Equations..,…,,,…, 154 5.3.6.2. Energy Coupling and the do model 55 5.3.6.2.1. Limitations of DO/Energy Coupling 156 5.3.63. Angular Discretization and Pixelation…......….…….156 5.3.6.4. Anisotropic Scattering……………………,…,…,…,…,…,……….159 5.3.6.5. Particulate effects in the do model wwwmwwwwwwwww 160 5.3.6.6. Boundary and cell Zone condition Treatment at opaque walls 160 5.3.6.6.1. Gray Diffuse Walls..... :.a:.···:..··.··Ba:.:.. ···.·· 162 5.3.6.6.2. Non-Gray diffuse Walls 162 5.3.67. Cell Zone and Boundary Condition Treatment at Semi- Transparent Wal!s…………….162 53.67.1. Semi-Transparent Interior Walls∴,,…,…,,…,……163 5.3.6.7.2. Specular Semi-Transparent walls 。· 164 5.3.67.3. Diffuse Semi-Transparent Walls……………………166 5.3.67.4. Partially Diffuse Semi- Transparent Walls…….…….….…167 5.3.6.7.5.5 emi-Transparent Exterior Wa|ls..……………167 5.3.6.7.6. Limitations 169 5.3.6.7.7. Solid Semi-Transparent Media.......................... 70 5.3.6.8. Boundary Condition Treatment at Specular Walls and Symmetry Boundaries ·····.··. 70 5.3.69. Boundary Condition Treatment at Periodic Boundaries…......,…,…,……170 5.3.6.10. Boundary Condition Treatment at Flow Inlets and Exits ·:····· ∴170 5.3.7. Surface-to-Surface(S2S)Radiation Model Theory ............... 170 5.3.7.1.Gray- Diffuse Radiation………… 170 5.3.7.2. The S2S Model Equations............ 171 Release 17.0-O SAS /P Inc. All rights reserved. -Contains proprietary and confidential information of ansys inc and its subsidiaries and affiliates Theory guide 5.3.7.3. Clustering 72 5.3.7.3.1. Clustering andⅦ iew Factors……,,…,,,…,…,… 172 53.7.3.2.C| uttering and radiosity....,.,,…,,…,… 172 5.3.8. Radiation in Combusting Flows…………,…,,,…,…,…,,…,…………,173 5.3.81. The Weighted-Sum- of-Gray-Gases Model...,…,…,…,…,,…,……………,……,173 5.3.8.1.1. When the Total( Static) Gas Pressure is Not Equal to1atm…………………,174 5.3.8.2. The Effect of Soot on the absorption coefficient 174 5.3.8.3. The Effect of Particles on the absorption Coefficient ∴175 5.3.9. Choosing a Radiation Model.... 75 5.3.9.1. External radiation 76 6. Heat Exchangers 77 6.1. The Macro heat Exchanger models 6.1.1. Overview of the macro heat Exchanger models 177 6.1.2. Restrictions of the Macro Heat Exchanger Models.......... 79 6.1.3. Macro Heat Exchanger Model Theory 80 6.1.3.1. Streamwise Pressure drop……,…,…,…,…,…,…,…,…,…,………,181 6.1.3.2. Heat Transfer Effectiveness ∴182 6.1.3.3. Heat Rejection .·. ,183 6.1.3.4. Macro Heat EXchanger Group Connectivity………………………,184 6.2. The dual cell! Model.……………,185 6.2.1. Overview of the dual cell model 185 6.2.2 Restrictions of the dual cell model wwwwwwmwwmwww 186 623. Dual Cell Model Theory……………,…,………,……,………186 6.2.3.1. NTU Relations 187 6.2.32. Heat Rejection…………,…,……… 4187 7 Species transport and finite-Rate chemistry 189 7.1 Volumetric Reactions 189 7.1.1. Species Transport Equations 189 7. 1.1.1. Mass Diffusion in Laminar Flows 190 7.1.1.2. Mass Diffusion in turbulent flows 190 7.1.1.3. Treatment of Species Transport in the Energy equation.....................190 7. 4. Diffusion at Inlets 190 7.1.2. The Generalized Finite-Rate Formulation for Reaction Modeling 191 7.1.2.1. Direct use of finite- Rate Kinetics(noTC)………………,191 7.1.2.2. Pressure-Dependent reactions..........................193 7.1.2.3. the eddy-Dissipation Model 195 7.1.2.4. The Eddy-Dissipation Model for LES 196 7.1.2.5. The Eddy- Dissipation-Concept( EDC Model……………………………196 7.1.2.6. the thickened flame model . 7.127. The relaxation to Chemical Equilibrium Model…….…..….…,….,…,………….19 7. 2. Wall Surface Reactions and Chemical Vapor deposition .........201 7.2.1. Surface Coverage Reaction Rate Modification............202 7.2.2. Reaction- Diffusion Balance for Surface Chemistry.......…………….203 7.2.3. Slip Boundary「 ormulation for low- Pressure Gas Systems.…,,…,,…,……,…,……,203 7 3. Particle surface reactions ∴205 7.3.1.General Description .......................205 7.3.2. ANSYS Fluent model formulation 206 7.3.3. Extension for Stoichiometries with multiple gas phase reactants................ 207 7.3.4. Solid- Solid reactions∴.………………208 7.3.5. Solid Decomposition Reactions.................. 208 7.3.6. Solid Deposition Reactions ∩Q 7.3.7. Gaseous Solid Catalyzed Reactions on the Particle Surface 208 Release 17.0-O SAS /P Inc. All rights reserved. -Contains proprietary and confidential information of ansys inc and its subsidiaries and affiliates Theory guide 7.4. Electrochemical reactions……,209 7,4.1. Overview and limⅰtatⅰons 209 74.2 Electrochemical Reaction Model Theory.....,,,,.………,209 7.5. Reacting Channel Model……….……………………………………212 7.5.1. Overview and limitations.……212 7.5.2. Reacting Channel Model Theory……………,213 7.521.F| ow Inside the reacting Channel….… 213 7.5. 2 Surface Reactions in the reacting channel ... 214 7.5.2.3. Porous Medium Inside reacting Channel. 215 7.5.2.4. Outer flow in the shellwwwwwwwwowwww 215 76 Reactor network model 216 7.6.1. Reactor Network Model Theory………,…,…,…,……,…,………,216 7.6.1.1. Reactor network temperature solution .217 8.Non- Premiκ ed combustion∴………………,………………………………………….219 8.1. Introduction 219 8. 2. Non-Premixed Combustion and mixture fraction Theory 219 8.2.1. Mixture Fraction Theory 220 8.2.1.1. Definition of the miⅸ xture fraction..………………20 8.2.1.2. Transport Equations for the miⅸ xture fraction………………………,……22 8.2.1.3. The non-Premixed model for les 223 8.2.1. 4 Mixture Fraction vs equivalence ratio 223 8.2.1.5. Relationship of Mixture Fraction to Species Mass Fraction, Density, and Temperature..224 82,2. Modeling of Turbulence-Chemistry Interaction………………………25 8.2.2.1. Description of the Probability Density Function 225 8.2.2.2 Derivation of mean scalar values from the instantaneous mixture fraction 225 8.2.2.3. The Assumed-Shape PDF .226 8.2.2.3.1. The double delta function pde……………….226 8.2.2.3.2. The B-Function PDI 227 8.2.3. Non-Adiabatic Extensions of the non Premixed model 228 824. Chemistry Tabulation……… ,230 8241.Look-UpTablesforAdabatcsystems.........230 8242.3 D Look-Up Tables for Non-Adiabatic Systems……… 232 82.43. Generating Lookup Tables through Automated Grid Refinement……………234 83. Restrictions and Special Cases for Using the Non- Premixed model.…………………236 8.3.1. Restrictions on the mixture Fraction Approach........ 236 8.3.2. Using the Non-Premixed Model for Liquid Fuel or Coal Combustion 239 8.3.3. Using the Non-Premixed Model with Flue Gas Recycle 240 83.4. Using the non- Premixed model with the inert model…………………………………………,240 834.1. Mixture Composition…… 241 8.3.41.1. Property Evaluation……….…………….………………….…………………..…242 8.4. The Diffusion Flamelet Models Theory ··:4.+··.··.·· 242 8.4.1. Restrictions and Assumptions 242 8.4.2. The Flamelet Concept 242 8.4.2.1. verviev,,,242 8.4.2.2. Strain Rate and scalar dissipation 8.4.2.3.Embedding Diffusion Flamelets in Turbulent Flames 244 244 8. 4.3. Flamelet Generation 245 8.4.4. Flamelet Import 春非··非非非。··非自非自非非音非。着音非,。非·自。非·。··着·非。,·自音非。非。音非非非非非音 246 8.5. The Steady Diffusion Flamelet Model Theory………,…,…,…,,…,……,……,,…,,248 8.5.1. Overview∴……248 8.5.2. Multiple Steady Flamelet 249 8.5.3. Steady Diffusion Flamelet Automated Grid Refinement . Release 17.0-O SAS /P Inc. All rights reserved. -Contains proprietary and confidential information of ansys inc and its subsidiaries and affiliates

...展开详情

评论 下载该资源后可以进行评论 4

sectionfirst 有点难度,看了几天也不是很懂,谢谢
2020-05-18
回复
seseqrs 找了半天还是这里找到了 谢谢
2019-03-20
回复
as765033212 这是英文版的,各位按需下载~但 内容很棒,不是扫描版
2019-03-19
回复
收到个大家伙 不错不错,资源给力,赞!
2018-11-04
回复
img
lengxing1

关注 私信 TA的资源

上传资源赚积分,得勋章
最新资源