Science2006 - Reducing the Dimensionality of Data with Neural Networks

5星(超过95%的资源)
所需积分/C币:27 2015-05-21 10:03:06 416KB PDF
26
收藏 收藏
举报

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such ‘‘autoencoder’’ networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.

...展开详情
试读 5P Science2006 - Reducing the Dimensionality of Data with Neural Networks
立即下载 身份认证后 购VIP低至7折
一个资源只可评论一次,评论内容不能少于5个字
qq_31298973 很有帮助的文档,大牛的原著啊,不错不错
2015-10-22
回复
您会向同学/朋友/同事推荐我们的CSDN下载吗?
谢谢参与!您的真实评价是我们改进的动力~
  • 分享王者

关注 私信
上传资源赚钱or赚积分
最新推荐
Science2006 - Reducing the Dimensionality of Data with Neural Networks 27积分/C币 立即下载
1/5
Science2006 - Reducing the Dimensionality of Data with Neural Networks第1页

试读结束, 可继续读1页

27积分/C币 立即下载