Streaming Graph Neural Networks.pdf

所需积分/C币:13 2020-03-29 10:34:20 887KB PDF
收藏 收藏

Graphs are essential representations of many real-world data such as social networks. Recent years have witnessed the increasing efforts made to extend the neural network models to graph-structured data. These methods, which are usually known as the graph neural networks, have been applied to advance many graphs related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytic tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new Dynamic Graph Neural Network model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges (interactions), the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.

试读 11P Streaming Graph Neural Networks.pdf
立即下载 低至0.43元/次 身份认证VIP会员低至7折
  • 分享宗师

关注 私信
    Streaming Graph Neural Networks.pdf 13积分/C币 立即下载
    Streaming Graph Neural Networks.pdf第1页
    Streaming Graph Neural Networks.pdf第2页
    Streaming Graph Neural Networks.pdf第3页

    试读结束, 可继续读1页

    13积分/C币 立即下载 >