下载  >  人工智能  >  深度学习  > 基于深度学习的视频人脸识别方法(论文共64页)

基于深度学习的视频人脸识别方法(论文共64页) 评分

基于深度学习模型的人脸识别部分主要包含三个模块:数据预处理模块、深度学习模块和识别模块。数据预处理模块主要由数据整合和构造数据立方体两个部分组成。深度学习模块通过两个具体过程来实现:RBM 调节和深度模型的反馈微调。RBM 的调节过程是自下而上的各个层间的调节过程,以这种方式来初始化整个深度模型的系统权值,而深度模型的反馈微调,首先进行自下而上的识别模型转换,然后再进行自上而下的生成模型转换,最后通过不同层次之间的不断调节,使生成模型可以重构出具有较低误差的原样本,这样就得到了此样本的本质特征,即深度模型的最高抽象表示形式。

...展开详情
所需积分/C币:11 上传时间:2018-06-10 资源大小:3.08MB
举报 举报 收藏 收藏 (2)
分享 分享
基于深度学习的视频人脸识别方法

本文的视频人脸检测识别方法的基本设计思想是,在给出一段视频文件以及这个视频文件的字幕和剧本之后,可以自动的对视频中的人物进行检测和识别,不需要任何的训练样本。视频人脸检测识别方法主要由四个部分组成:字幕剧本融合部分,人脸检测部分,样本集自动生成部分和基于深度学习的人脸识别部分。本文将深度学习算法引入到了视频人脸识别中来,有两方面的重要意义,一方面,视频人脸的识别要求算法具备一定的抗干扰能力,并且能够保证一定的实时性,本文的实验与分析表明,深度学习算法具备这方面的要求;另一方面,从深度学习算法特性的角度来说,深度学习算法最大的缺点就是构造深度模型需要大量的样木,这很大程度上限制了深度学习算法的应

立即下载
基于深度学习的人脸识别的研究

本篇论文讲述了一种基于深度网络学习的人脸识别方法,

立即下载
视频中人脸识别

之前找到的一个基于matlab编写的视频中人脸识别程序。

立即下载