<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="utf-8"><meta name="generator" content="pdf2htmlEX"><meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"><link rel="stylesheet" href="https://csdnimg.cn/release/download_crawler_static/css/base.min.css"><link rel="stylesheet" href="https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css"><link rel="stylesheet" href="https://csdnimg.cn/release/download_crawler_static/10443693/raw.css"><script src="https://csdnimg.cn/release/download_crawler_static/js/compatibility.min.js"></script><script src="https://csdnimg.cn/release/download_crawler_static/js/pdf2htmlEX.min.js"></script><script>try{pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});}catch(e){}</script><title></title></head><body><div id="sidebar" style="display: none"><div id="outline"></div></div><div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://csdnimg.cn/release/download_crawler_static/10443693/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">01getting_started_with_tableau_prep</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">02the_tableau_prep_interface</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">03the_input_step_0</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">04the_input_step_0</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">05group_and_replace</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">06the_profile_pane</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">07the_pivot_step</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">08the_aggregate_step</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">09the_join_step</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">10the_union_step</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">11the_output_step</div><a class="l"><div class="d m1"></div></a><a class="l"><div class="d m1"></div></a><a class="l"><div class="d m1"></div></a><a class="l"><div class="d m1"></div></a><a class="l"><div class="d m1"></div></a><a class="l"><div class="d m1"></div></a><a class="l"><div class="d m1"></div></a><a class="l"><div class="d m1"></div></a><a class="l"><div class="d m1"></div></a><a class="l"><div class="d m1"></div></a><a class="l"><div class="d m1"></div></a></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div></body></html>
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://csdnimg.cn/release/download_crawler_static/10443693/bg2.jpg"><div class="t m0 x2 h3 yc ff2 fs1 fc1 sc0 ls1 ws1">F<span class="_ _0"></span>r<span class="_ _1"></span>e<span class="_ _2"></span>e<span class="_ _3"></span> T<span class="_ _4"></span>r<span class="_ _5"></span>ainin<span class="_ _2"></span>g<span class="_ _3"></span> T<span class="_ _4"></span>r<span class="_ _5"></span>ans<span class="_ _2"></span>crip<span class="_ _5"></span>t:<span class="_ _2"></span> </div><div class="t m0 x2 h3 yd ff2 fs1 fc1 sc0 ls0 ws0">G<span class="_ _5"></span>e<span class="_ _6"></span>t<span class="_ _2"></span>t<span class="_ _1"></span>i<span class="_ _1"></span>n<span class="_ _5"></span>g S<span class="_ _6"></span>t<span class="_ _5"></span>a<span class="_ _1"></span>r<span class="_ _7"></span>t<span class="_ _0"></span>ed w<span class="_ _1"></span>i<span class="_ _8"></span>t<span class="_ _1"></span>h </div><div class="t m0 x2 h3 ye ff2 fs1 fc1 sc0 ls2 ws2">T<span class="_ _9"></span>ableau<span class="_ _3"></span> Pr<span class="_ _6"></span>ep</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
<div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://csdnimg.cn/release/download_crawler_static/10443693/bg3.jpg"><div class="t m0 x3 h4 yf ff3 fs2 fc2 sc0 ls0 ws0">2</div><div class="t m0 x4 h5 y10 ff4 fs3 fc1 sc0 ls3 ws0">W<span class="_ _8"></span>elcome to th<span class="_ _2"></span>is v<span class="_ _2"></span>ideo on Get<span class="_ _2"></span>ti<span class="_ _2"></span>ng Star<span class="_ _2"></span>ted w<span class="_ _2"></span>ith Tablea<span class="_ _5"></span>u Prep. Y<span class="_ _1"></span>ou can dow<span class="_ _2"></span>n<span class="_ _2"></span>load the data set </div><div class="t m0 x4 h6 y11 ff5 fs3 fc1 sc0 ls3 ws3">and pack<span class="_ _2"></span>aged ow <span class="_ _5"></span>le underneath the v<span class="_ _2"></span>ideo to <span class="_ _5"></span>fo<span class="_ _8"></span>l<span class="_ _2"></span>low along <span class="_ _5"></span>in your ow<span class="_ _2"></span>n copy <span class="_ _5"></span>of Tab<span class="_ _8"></span>leau </div><div class="t m0 x4 h6 y12 ff5 fs3 fc1 sc0 ls3 ws3">Prep. <span class="_ _5"></span>W<span class="_ _8"></span>e’<span class="_ _8"></span>re wor<span class="_ _5"></span>k<span class="_ _2"></span>i<span class="_ _2"></span>ng with data fo<span class="_ _5"></span>r bestsel<span class="_ _2"></span>li<span class="_ _2"></span>ng book<span class="_ _2"></span>s.</div><div class="t m0 x4 h7 y13 ff2 fs4 fc1 sc0 ls4 ws4">Getting Star<span class="_ _2"></span>t<span class="_ _5"></span>ed with T<span class="_ _0"></span>ableau Pr<span class="_ _8"></span>ep</div><div class="t m0 x4 h6 y14 ff5 fs3 fc1 sc0 ls3 ws3">Tabl<span class="_ _5"></span>eau <span class="_ _5"></span>Prep mak<span class="_ _2"></span>es it <span class="_ _8"></span>ea<span class="_ _2"></span>sy to get <span class="_ _5"></span>your da<span class="_ _8"></span>t<span class="_ _2"></span>a ready f<span class="_ _8"></span>or ana<span class="_ _2"></span>lysis. With the same hig<span class="_ _2"></span>hly </div><div class="t m0 x4 h6 y15 ff5 fs3 fc1 sc0 ls3 ws3">interact<span class="_ _2"></span>ive<span class="_ _8"></span>, dr<span class="_ _2"></span>ag and drop <span class="_ _5"></span>interact<span class="_ _2"></span>ions yo<span class="_ _5"></span>u<span class="_ _8"></span>’<span class="_ _5"></span>re used to<span class="_ _8"></span>, Tab<span class="_ _5"></span>lea<span class="_ _5"></span>u Prep can be used to </div><div class="t m0 x4 h6 y16 ff5 fs3 fc1 sc0 ls3 ws3">comb<span class="_ _5"></span>i<span class="_ _2"></span>ne<span class="_ _8"></span>, clean, <span class="_ _5"></span>and shape y<span class="_ _5"></span>our da<span class="_ _5"></span>ta ex<span class="_ _2"></span>act<span class="_ _2"></span>ly how <span class="_ _5"></span>you <span class="_ _5"></span>wa<span class="_ _2"></span>nt i<span class="_ _5"></span>t. </div><div class="t m0 x4 h6 y17 ff5 fs3 fc1 sc0 ls3 ws3">Prepar<span class="_ _2"></span>i<span class="_ _2"></span>ng da<span class="_ _8"></span>t<span class="_ _2"></span>a is done <span class="_ _5"></span>by by buildi<span class="_ _2"></span>ng a <span class="_ _5"></span>ow<span class="_ _6"></span>, made up o<span class="_ _5"></span>f steps <span class="_ _5"></span>such as cleani<span class="_ _2"></span>ng<span class="_ _8"></span>, pivo<span class="_ _5"></span>ti<span class="_ _2"></span>ng<span class="_ _5"></span>, </div><div class="t m0 x4 h6 y18 ff5 fs3 fc1 sc0 ls3 ws3">or a<span class="_ _5"></span>gg<span class="_ _2"></span>regat<span class="_ _2"></span>ing data. Tab<span class="_ _5"></span>lea<span class="_ _8"></span>u Desk<span class="_ _2"></span>top wor<span class="_ _5"></span>k<span class="_ _2"></span>s best w<span class="_ _2"></span>ith data that <span class="_ _5"></span>is “tidy<span class="_ _5"></span>” in str<span class="_ _2"></span>uct<span class="_ _2"></span>ure. T<span class="_ _5"></span>hat </div><div class="t m0 x4 h6 y19 ff5 fs3 fc1 sc0 ls3 ws3">is, the da<span class="_ _8"></span>t<span class="_ _2"></span>a sh<span class="_ _5"></span>ould be in rows and co<span class="_ _8"></span>lum<span class="_ _2"></span>ns, and e<span class="_ _5"></span>ach row sh<span class="_ _5"></span>ould rep<span class="_ _8"></span>re<span class="_ _2"></span>sent <span class="_ _5"></span>one i<span class="_ _8"></span>tem of da<span class="_ _5"></span>ta </div><div class="t m0 x4 h6 y1a ff5 fs3 fc1 sc0 ls3 ws3">and each co<span class="_ _5"></span>lumn sho<span class="_ _5"></span>uld be one <span class="_ _8"></span>at<span class="_ _2"></span>tr<span class="_ _2"></span>ibut<span class="_ _5"></span>e. H<span class="_ _8"></span>ow do we <span class="_ _5"></span>get our da<span class="_ _8"></span>t<span class="_ _2"></span>a that way using Tabl<span class="_ _8"></span>eau </div><div class="t m0 x4 h5 y1b ff4 fs3 fc1 sc0 ls3 ws0">Prep? Let<span class="_ _8"></span>’<span class="_ _8"></span>s jump in! </div><div class="t m0 x4 h7 y1c ff6 fs4 fc1 sc0 ls5 ws5">Bu<span class="_ _5"></span>i<span class="_ _5"></span>ld<span class="_ _5"></span>i<span class="_ _5"></span>ng <span class="_ _5"></span>a <span class="_ _5"></span>o<span class="_ _8"></span>w</div><div class="t m0 x4 h6 y1d ff5 fs3 fc1 sc0 ls0 ws0">Fir<span class="_ _2"></span>st<span class="_ _5"></span>, we<span class="_ _5"></span>’<span class="_ _1"></span>l<span class="_ _2"></span>l connec<span class="_ _2"></span>t to the data set. Our b<span class="_ _2"></span>estsel<span class="_ _2"></span>ler da<span class="_ _5"></span>ta is i<span class="_ _2"></span>n E<span class="_ _2"></span>xcel. W<span class="_ _8"></span>e’<span class="_ _1"></span>ll con<span class="_ _2"></span>nect to t<span class="_ _2"></span>he </div><div class="t m0 x4 h6 y1e ff5 fs3 fc1 sc0 ls0 ws0">A<span class="_ _2"></span>BA Bestsel<span class="_ _2"></span>ler list from F<span class="_ _5"></span>ebrua<span class="_ _2"></span>r<span class="_ _2"></span>y 28th. Her<span class="_ _5"></span>e in t<span class="_ _2"></span>he Conne<span class="_ _2"></span>ct<span class="_ _2"></span>ions Pane we see t<span class="_ _2"></span>he li<span class="_ _2"></span>st of </div><div class="t m0 x4 h6 y1f ff5 fs3 fc1 sc0 ls0 ws0">tabl<span class="_ _5"></span>es (<span class="_ _1"></span>or sheet tabs<span class="_ _6"></span>) i<span class="_ _2"></span>n t<span class="_ _2"></span>hi<span class="_ _2"></span>s data set. W<span class="_ _8"></span>e’<span class="_ _1"></span>l<span class="_ _2"></span>l drag out a tabl<span class="_ _8"></span>e, and now we hav<span class="_ _5"></span>e our rst </div><div class="t m0 x4 h6 y20 ff5 fs3 fc1 sc0 ls0 ws0">step in t<span class="_ _2"></span>he ow<span class="_ _1"></span>. </div><div class="t m0 x4 h6 y21 ff5 fs3 fc1 sc0 ls0 ws0">This i<span class="_ _2"></span>npu<span class="_ _5"></span>t step is congu<span class="_ _2"></span>rabl<span class="_ _5"></span>e below<span class="_ _8"></span>. W<span class="_ _8"></span>e ca<span class="_ _2"></span>n bri<span class="_ _2"></span>ng in e<span class="_ _2"></span>ver<span class="_ _2"></span>y sheet in t<span class="_ _2"></span>he le by using </div><div class="t m0 x4 h5 y22 ff4 fs3 fc1 sc0 ls0 ws0">w<span class="_ _2"></span>ildcard u<span class="_ _2"></span>nion and leavi<span class="_ _2"></span>ng t<span class="_ _2"></span>he ma<span class="_ _5"></span>tchi<span class="_ _2"></span>ng pattern blan<span class="_ _2"></span>k<span class="_ _2"></span>. O<span class="_ _2"></span>ver on the rig<span class="_ _2"></span>ht w<span class="_ _5"></span>e can se<span class="_ _2"></span>e a </div><div class="t m0 x4 h6 y23 ff5 fs3 fc1 sc0 ls0 ws0">li<span class="_ _2"></span>st of the elds we<span class="_ _8"></span>’<span class="_ _8"></span>ll bri<span class="_ _2"></span>ng in f<span class="_ _2"></span>rom these tables. E<span class="_ _8"></span>ver<span class="_ _2"></span>y<span class="_ _2"></span>t<span class="_ _2"></span>hi<span class="_ _2"></span>ng look<span class="_ _2"></span>s good. </div><div class="t m0 x4 h6 y24 ff5 fs3 fc1 sc0 ls0 ws0">Up in t<span class="_ _2"></span>he <span class="_ _5"></span>ow pane, w<span class="_ _5"></span>e can rena<span class="_ _2"></span>me t<span class="_ _2"></span>hi<span class="_ _2"></span>s step by dou<span class="_ _5"></span>bl<span class="_ _5"></span>e cl<span class="_ _2"></span>ick<span class="_ _2"></span>i<span class="_ _2"></span>ng and t<span class="_ _2"></span>y<span class="_ _2"></span>ping a na<span class="_ _2"></span>me<span class="_ _5"></span>-<span class="_ _8"></span>-<span class="_ _8"></span>let<span class="_ _5"></span>’<span class="_ _8"></span>s </div><div class="t m0 x4 h6 y25 ff5 fs3 fc1 sc0 ls0 ws0">cal<span class="_ _2"></span>l t<span class="_ _2"></span>hi<span class="_ _2"></span>s F<span class="_ _8"></span>ebr<span class="_ _2"></span>uar<span class="_ _2"></span>y 28th. </div><div class="t m0 x4 h6 y26 ff5 fs3 fc1 sc0 ls0 ws0">To add another step to the <span class="_ _5"></span>ow<span class="_ _1"></span>, we’<span class="_ _1"></span>ll cl<span class="_ _2"></span>ick t<span class="_ _2"></span>he pl<span class="_ _8"></span>us button. W<span class="_ _8"></span>e just wa<span class="_ _2"></span>nt a basic cle<span class="_ _5"></span>an<span class="_ _2"></span>i<span class="_ _2"></span>ng </div><div class="t m0 x4 h6 y27 ff5 fs3 fc1 sc0 ls0 ws0">step to star<span class="_ _2"></span>t. This w<span class="_ _3"></span>il<span class="_ _2"></span>l let us see the state of o<span class="_ _5"></span>ur date and what we might need to do to </div><div class="t m0 x4 h6 y28 ff5 fs3 fc1 sc0 ls0 ws0">clean it. Below the ow pane<span class="_ _8"></span>, we now see t<span class="_ _2"></span>he pr<span class="_ _5"></span>ole pane and data g<span class="_ _2"></span>rid. The p<span class="_ _5"></span>role pane </div><div class="t m0 x4 h6 y29 ff5 fs3 fc1 sc0 ls0 ws0">shows a card fo<span class="_ _5"></span>r each eld in t<span class="_ _2"></span>he da<span class="_ _5"></span>ta set, and t<span class="_ _2"></span>he cards display t<span class="_ _2"></span>he values in each eld </div><div class="t m0 x4 h6 y2a ff5 fs3 fc1 sc0 ls0 ws0">as wel<span class="_ _2"></span>l as di<span class="_ _2"></span>str<span class="_ _2"></span>ibution in<span class="_ _2"></span>fo<span class="_ _5"></span>rm<span class="_ _2"></span>ation abou<span class="_ _5"></span>t how frequen<span class="_ _5"></span>t<span class="_ _2"></span>ly each va<span class="_ _2"></span>lu<span class="_ _5"></span>e appears. By cl<span class="_ _2"></span>ick<span class="_ _2"></span>i<span class="_ _2"></span>ng </div><div class="t m0 x4 h6 y2b ff5 fs3 fc1 sc0 ls0 ws0">on a bar<span class="_ _8"></span>, we can h<span class="_ _2"></span>igh<span class="_ _2"></span>lig<span class="_ _2"></span>ht rela<span class="_ _8"></span>ted v<span class="_ _2"></span>a<span class="_ _2"></span>l<span class="_ _5"></span>ues in ot<span class="_ _2"></span>her <span class="_ _5"></span>elds. </div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
<div id="pf4" class="pf w0 h0" data-page-no="4"><div class="pc pc4 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://csdnimg.cn/release/download_crawler_static/10443693/bg4.jpg"><div class="t m0 x3 h4 yf ff3 fs2 fc2 sc0 ls0 ws0">3</div><div class="t m0 x4 h6 y10 ff5 fs3 fc1 sc0 ls0 ws0">The Info <span class="_ _8"></span>eld has multipl<span class="_ _5"></span>e pieces of information i<span class="_ _2"></span>n one co<span class="_ _8"></span>lum<span class="_ _2"></span>n. If we look do<span class="_ _5"></span>w<span class="_ _2"></span>n at t<span class="_ _2"></span>hat </div><div class="t m0 x4 h6 y11 ff5 fs3 fc1 sc0 ls0 ws0">data gr<span class="_ _2"></span>id<span class="_ _8"></span>, w<span class="_ _2"></span>hich shows a more row<span class="_ _8"></span>-<span class="_ _8"></span>level represen<span class="_ _5"></span>tation of the data, we see that th<span class="_ _2"></span>is </div><div class="t m0 x4 h6 y12 ff5 fs3 fc1 sc0 ls0 ws0">el<span class="_ _5"></span>d has a pipe bet<span class="_ _2"></span>ween t<span class="_ _2"></span>itle and author<span class="_ _1"></span>, t<span class="_ _2"></span>hen a do<span class="_ _5"></span>lla<span class="_ _2"></span>r sign b<span class="_ _2"></span>efo<span class="_ _5"></span>re t<span class="_ _2"></span>he p<span class="_ _5"></span>rice<span class="_ _5"></span>, and a pipe </div><div class="t m0 x4 h6 y2c ff5 fs3 fc1 sc0 ls0 ws0">and “<span class="_ _8"></span>IS<span class="_ _8"></span>BN<span class="_ _8"></span>”<span class="_ _6"></span>. W<span class="_ _5"></span>e can split t<span class="_ _2"></span>hese values ou<span class="_ _5"></span>t into un<span class="_ _2"></span>iq<span class="_ _5"></span>ue co<span class="_ _5"></span>lumns-<span class="_ _1"></span>-as we want fo<span class="_ _5"></span>r ana<span class="_ _2"></span>lysis. </div><div class="t m0 x4 h6 y2d ff5 fs3 fc1 sc0 ls0 ws0">Click on t<span class="_ _2"></span>he card a<span class="_ _2"></span>nd open the menu. Th<span class="_ _5"></span>ere are multip<span class="_ _5"></span>le cleani<span class="_ _2"></span>ng op<span class="_ _5"></span>t<span class="_ _2"></span>ions here<span class="_ _8"></span>, but w<span class="_ _5"></span>e’<span class="_ _6"></span>l<span class="_ _2"></span>l </div><div class="t m0 x4 h6 y2e ff5 fs3 fc1 sc0 ls0 ws0">choose aut<span class="_ _5"></span>omatic split. Tab<span class="_ _5"></span>lea<span class="_ _8"></span>u P<span class="_ _2"></span>rep is sma<span class="_ _2"></span>r<span class="_ _2"></span>t enou<span class="_ _5"></span>gh to recog<span class="_ _2"></span>n<span class="_ _2"></span>i<span class="_ _2"></span>ze common deli<span class="_ _2"></span>miters<span class="_ _5"></span>-<span class="_ _8"></span>-</div><div class="t m0 x4 h6 y2f ff5 fs3 fc1 sc0 ls0 ws0">even when t<span class="_ _2"></span>hey’<span class="_ _1"></span>re d<span class="_ _2"></span>ierent<span class="_ _6"></span>-<span class="_ _8"></span>-<span class="_ _5"></span>and w<span class="_ _2"></span>i<span class="_ _2"></span>ll split out these fo<span class="_ _5"></span>ur new col<span class="_ _5"></span>um<span class="_ _2"></span>ns. </div><div class="t m0 x4 h6 y30 ff5 fs3 fc1 sc0 ls0 ws0">Renam<span class="_ _2"></span>ing t<span class="_ _2"></span>he new el<span class="_ _5"></span>ds is a<span class="_ _2"></span>s easy a<span class="_ _2"></span>s doub<span class="_ _8"></span>le cl<span class="_ _2"></span>ick<span class="_ _2"></span>i<span class="_ _2"></span>ng and t<span class="_ _2"></span>y<span class="_ _2"></span>ping t<span class="_ _2"></span>he desired name. W<span class="_ _8"></span>e </div><div class="t m0 x4 h6 y31 ff5 fs3 fc1 sc0 ls0 ws0">no lo<span class="_ _5"></span>nger need the origi<span class="_ _2"></span>na<span class="_ _2"></span>l Info eld<span class="_ _8"></span>, so we ca<span class="_ _2"></span>n remove i<span class="_ _8"></span>t<span class="_ _2"></span>. W<span class="_ _8"></span>e ca<span class="_ _2"></span>n al<span class="_ _2"></span>so split th<span class="_ _2"></span>is eld and </div><div class="t m0 x4 h5 y32 ff4 fs3 fc1 sc0 ls0 ws0">remove the origi<span class="_ _2"></span>nal<span class="_ _2"></span>. Now we h<span class="_ _5"></span>ave al<span class="_ _2"></span>l the d<span class="_ _2"></span>ist<span class="_ _2"></span>inct columns we w<span class="_ _2"></span>ant. </div><div class="t m0 x4 h6 y33 ff5 fs3 fc1 sc0 ls0 ws0">Pr<span class="_ _2"></span>ice is cur<span class="_ _2"></span>rently a str<span class="_ _2"></span>ing data t<span class="_ _2"></span>y<span class="_ _2"></span>pe, bu<span class="_ _8"></span>t it sho<span class="_ _5"></span>uld be a dec<span class="_ _2"></span>ima<span class="_ _2"></span>l number<span class="_ _5"></span>. W<span class="_ _8"></span>e ca<span class="_ _2"></span>n cl<span class="_ _2"></span>ick t<span class="_ _2"></span>he </div><div class="t m0 x4 h6 y34 ff5 fs3 fc1 sc0 ls0 ws0">data t<span class="_ _2"></span>y<span class="_ _2"></span>pe icon and choose number (<span class="_ _1"></span>deci<span class="_ _2"></span>ma<span class="_ _2"></span>l<span class="_ _8"></span>)<span class="_ _8"></span>. </div><div class="t m0 x4 h6 y35 ff5 fs3 fc1 sc0 ls0 ws0">W<span class="_ _8"></span>e have more w<span class="_ _5"></span>eek<span class="_ _2"></span>s wor<span class="_ _2"></span>th of data, so l<span class="_ _5"></span>et<span class="_ _8"></span>’<span class="_ _8"></span>s add t<span class="_ _2"></span>hem to the ow<span class="_ _8"></span>. W<span class="_ _8"></span>e ca<span class="_ _2"></span>n connect to new </div><div class="t m0 x4 h6 y36 ff5 fs3 fc1 sc0 ls0 ws0">data (<span class="_ _1"></span>it can b<span class="_ _2"></span>e from any source<span class="_ _5"></span>, bu<span class="_ _5"></span>t ours happens to be a<span class="_ _2"></span>nother Excel le<span class="_ _1"></span>)<span class="_ _5"></span>. W<span class="_ _8"></span>e’<span class="_ _1"></span>l<span class="_ _2"></span>l bring i<span class="_ _2"></span>n </div><div class="t m0 x4 h5 y37 ff4 fs3 fc1 sc0 ls0 ws0">a tabl<span class="_ _5"></span>e<span class="_ _5"></span>, select w<span class="_ _2"></span>i<span class="_ _2"></span>ldcard un<span class="_ _2"></span>ion<span class="_ _8"></span>, a<span class="_ _2"></span>nd now we hav<span class="_ _5"></span>e our second data source<span class="_ _5"></span>. </div><div class="t m0 x4 h6 y38 ff5 fs3 fc1 sc0 ls0 ws0">To comb<span class="_ _8"></span>i<span class="_ _2"></span>ne t<span class="_ _2"></span>wo steps in t<span class="_ _2"></span>he ow<span class="_ _6"></span>, si<span class="_ _2"></span>mp<span class="_ _5"></span>ly drag one on<span class="_ _5"></span>to the other<span class="_ _8"></span>, and chose Jo<span class="_ _8"></span>i<span class="_ _2"></span>n or </div><div class="t m0 x4 h6 y39 ff5 fs3 fc1 sc0 ls0 ws0">Union. H<span class="_ _5"></span>ere we hav<span class="_ _5"></span>e t<span class="_ _2"></span>he same col<span class="_ _8"></span>um<span class="_ _2"></span>n st<span class="_ _2"></span>ruc<span class="_ _2"></span>tures, so we wa<span class="_ _2"></span>nt to U<span class="_ _8"></span>n<span class="_ _2"></span>ion. W<span class="_ _8"></span>e ca<span class="_ _2"></span>n veri<span class="_ _2"></span>f<span class="_ _2"></span>y </div><div class="t m0 x4 h6 y3a ff5 fs3 fc1 sc0 ls0 ws0">ever<span class="_ _2"></span>y<span class="_ _2"></span>t<span class="_ _2"></span>hi<span class="_ _2"></span>ng matched up c<span class="_ _5"></span>orrec<span class="_ _2"></span>tly<span class="_ _8"></span>. </div><div class="t m0 x4 h6 y3b ff5 fs3 fc1 sc0 ls0 ws0">Now we s<span class="_ _5"></span>imply n<span class="_ _5"></span>eed to ma<span class="_ _2"></span>ke sure t<span class="_ _2"></span>he cleani<span class="_ _2"></span>ng we did is app<span class="_ _5"></span>lied to t<span class="_ _2"></span>he results from the </div><div class="t m0 x4 h6 y3c ff5 fs3 fc1 sc0 ls0 ws0">un<span class="_ _2"></span>ion<span class="_ _8"></span>, not the <span class="_ _2"></span>rst data set alone. W<span class="_ _1"></span>e ca<span class="_ _2"></span>n r<span class="_ _2"></span>ight click on t<span class="_ _2"></span>he li<span class="_ _2"></span>ne and select Remove<span class="_ _8"></span>, t<span class="_ _2"></span>hen </div><div class="t m0 x4 h5 y3d ff4 fs3 fc1 sc0 ls0 ws0">drag t<span class="_ _2"></span>he un<span class="_ _2"></span>ion st<span class="_ _5"></span>ep to the clean<span class="_ _2"></span>i<span class="_ _2"></span>ng step<span class="_ _8"></span>. That<span class="_ _8"></span>’<span class="_ _8"></span>s al<span class="_ _2"></span>l it tak<span class="_ _2"></span>es<span class="_ _5"></span>!</div><div class="t m0 x4 h6 y3e ff5 fs3 fc1 sc0 ls0 ws0">Our data is prepped a<span class="_ _2"></span>nd ready f<span class="_ _5"></span>or use<span class="_ _8"></span>, so let<span class="_ _8"></span>’<span class="_ _8"></span>s create an output st<span class="_ _5"></span>ep. W<span class="_ _1"></span>e’<span class="_ _1"></span>l<span class="_ _2"></span>l cl<span class="_ _2"></span>ick the pl<span class="_ _5"></span>us </div><div class="t m0 x4 h6 y3f ff5 fs3 fc1 sc0 ls0 ws0">and add an output. W<span class="_ _8"></span>e’<span class="_ _1"></span>l<span class="_ _2"></span>l choose a CSV<span class="_ _1"></span>. W<span class="_ _8"></span>e ca<span class="_ _2"></span>n where to save the le<span class="_ _8"></span>, a<span class="_ _2"></span>nd what to name it. </div><div class="t m0 x4 h6 y40 ff5 fs3 fc1 sc0 ls6 ws6">Now when we ru<span class="_ _2"></span>n t<span class="_ _2"></span>he <span class="_ _5"></span>ow<span class="_ _1"></span>, we generate a new <span class="_ _2"></span>le (<span class="_ _8"></span>Tableau Prep doesn<span class="_ _8"></span>’t wr<span class="_ _2"></span>ite back to the </div><div class="t m0 x4 h6 y41 ff5 fs3 fc1 sc0 ls0 ws0">origi<span class="_ _2"></span>na<span class="_ _2"></span>l data source<span class="_ _6"></span>). T<span class="_ _8"></span>h<span class="_ _2"></span>is ne<span class="_ _2"></span>w le con<span class="_ _5"></span>ta<span class="_ _2"></span>in<span class="_ _2"></span>s al<span class="_ _2"></span>l of our data as we cleaned a<span class="_ _2"></span>nd comb<span class="_ _8"></span>i<span class="_ _2"></span>ned it. </div><div class="t m0 x4 h6 y42 ff5 fs3 fc1 sc0 ls0 ws0">W<span class="_ _8"></span>e’<span class="_ _8"></span>re ready fo<span class="_ _5"></span>r ana<span class="_ _2"></span>lysis!</div><div class="t m0 x4 h7 y43 ff6 fs4 fc1 sc0 ls7 ws4">Conclus<span class="_ _8"></span>ion</div><div class="t m0 x4 h6 y44 ff5 fs3 fc1 sc0 ls0 ws0">F<span class="_ _5"></span>lows in Tablea<span class="_ _5"></span>u Prep ca<span class="_ _2"></span>n be simpl<span class="_ _5"></span>e or co<span class="_ _5"></span>mp<span class="_ _5"></span>lex, and each t<span class="_ _2"></span>y<span class="_ _2"></span>pe of step has robust </div><div class="t m0 x4 h6 y45 ff5 fs3 fc1 sc0 ls0 ws0">options. Thank you fo<span class="_ _5"></span>r watch<span class="_ _2"></span>ing t<span class="_ _2"></span>hi<span class="_ _2"></span>s v<span class="_ _2"></span>ideo on Gett<span class="_ _2"></span>i<span class="_ _2"></span>ng Star<span class="_ _2"></span>ted w<span class="_ _2"></span>ith Table<span class="_ _5"></span>au Prep<span class="_ _5"></span>. W<span class="_ _8"></span>e </div><div class="t m0 x4 h6 y46 ff5 fs3 fc1 sc0 ls0 ws0">inv<span class="_ _2"></span>ite y<span class="_ _5"></span>ou to con<span class="_ _8"></span>t<span class="_ _2"></span>i<span class="_ _2"></span>nu<span class="_ _5"></span>e w<span class="_ _2"></span>ith t<span class="_ _2"></span>he other free t<span class="_ _2"></span>ra<span class="_ _2"></span>in<span class="_ _2"></span>i<span class="_ _2"></span>ng videos to lear<span class="_ _2"></span>n more a<span class="_ _5"></span>bout using </div><div class="t m0 x4 h5 y47 ff4 fs3 fc1 sc0 ls8 ws7">Ta<span class="_ _2"></span>ble<span class="_ _2"></span>au.<span class="_ _2"></span> </div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
<div id="pf5" class="pf w0 h0" data-page-no="5"><div class="pc pc5 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://csdnimg.cn/release/download_crawler_static/10443693/bg5.jpg"><div class="t m0 x2 h3 yc ff7 fs1 fc1 sc0 ls1 ws1">F<span class="_ _0"></span>r<span class="_ _1"></span>e<span class="_ _2"></span>e<span class="_ _3"></span> T<span class="_ _4"></span>r<span class="_ _5"></span>ainin<span class="_ _2"></span>g<span class="_ _3"></span> </div><div class="t m0 x2 h3 yd ff7 fs1 fc1 sc0 ls9 ws8">T<span class="_ _9"></span>r<span class="_ _5"></span>ans<span class="_ _5"></span>cri<span class="_ _8"></span>p<span class="_ _8"></span>t<span class="_ _8"></span>:<span class="_ _3"></span> The<span class="_ _3"></span> T<span class="_ _9"></span>ableau<span class="_ _2"></span> </div><div class="t m0 x2 h3 ye ff7 fs1 fc1 sc0 lsa ws9">Pr<span class="_ _6"></span>ep<span class="_ _2"></span> I<span class="_ _8"></span>nt<span class="_ _6"></span>er<span class="_ _a"></span>f<span class="_ _5"></span>ace</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>