# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import warnings
from typing import Optional, Sequence
import mmcv
import numpy as np
from mmengine.fileio import get
from mmengine.hooks import Hook
from mmengine.runner import Runner
from mmengine.utils import mkdir_or_exist
from mmengine.visualization import Visualizer
from mmdet.datasets.samplers import TrackImgSampler
from mmdet.registry import HOOKS
from mmdet.structures import DetDataSample, TrackDataSample
from mmdet.structures.bbox import BaseBoxes
from mmdet.visualization.palette import _get_adaptive_scales
@HOOKS.register_module()
class DetVisualizationHook(Hook):
"""Detection Visualization Hook. Used to visualize validation and testing
process prediction results.
In the testing phase:
1. If ``show`` is True, it means that only the prediction results are
visualized without storing data, so ``vis_backends`` needs to
be excluded.
2. If ``test_out_dir`` is specified, it means that the prediction results
need to be saved to ``test_out_dir``. In order to avoid vis_backends
also storing data, so ``vis_backends`` needs to be excluded.
3. ``vis_backends`` takes effect if the user does not specify ``show``
and `test_out_dir``. You can set ``vis_backends`` to WandbVisBackend or
TensorboardVisBackend to store the prediction result in Wandb or
Tensorboard.
Args:
draw (bool): whether to draw prediction results. If it is False,
it means that no drawing will be done. Defaults to False.
interval (int): The interval of visualization. Defaults to 50.
score_thr (float): The threshold to visualize the bboxes
and masks. Defaults to 0.3.
show (bool): Whether to display the drawn image. Default to False.
wait_time (float): The interval of show (s). Defaults to 0.
test_out_dir (str, optional): directory where painted images
will be saved in testing process.
backend_args (dict, optional): Arguments to instantiate the
corresponding backend. Defaults to None.
"""
def __init__(self,
draw: bool = False,
interval: int = 50,
score_thr: float = 0.3,
show: bool = False,
wait_time: float = 0.,
test_out_dir: Optional[str] = None,
backend_args: dict = None):
self._visualizer: Visualizer = Visualizer.get_current_instance()
self.interval = interval
self.score_thr = score_thr
self.show = show
if self.show:
# No need to think about vis backends.
self._visualizer._vis_backends = {}
warnings.warn('The show is True, it means that only '
'the prediction results are visualized '
'without storing data, so vis_backends '
'needs to be excluded.')
self.wait_time = wait_time
self.backend_args = backend_args
self.draw = draw
self.test_out_dir = test_out_dir
self._test_index = 0
def after_val_iter(self, runner: Runner, batch_idx: int, data_batch: dict,
outputs: Sequence[DetDataSample]) -> None:
"""Run after every ``self.interval`` validation iterations.
Args:
runner (:obj:`Runner`): The runner of the validation process.
batch_idx (int): The index of the current batch in the val loop.
data_batch (dict): Data from dataloader.
outputs (Sequence[:obj:`DetDataSample`]]): A batch of data samples
that contain annotations and predictions.
"""
if self.draw is False:
return
# There is no guarantee that the same batch of images
# is visualized for each evaluation.
total_curr_iter = runner.iter + batch_idx
# Visualize only the first data
img_path = outputs[0].img_path
img_bytes = get(img_path, backend_args=self.backend_args)
img = mmcv.imfrombytes(img_bytes, channel_order='rgb')
if total_curr_iter % self.interval == 0:
self._visualizer.add_datasample(
osp.basename(img_path) if self.show else 'val_img',
img,
data_sample=outputs[0],
show=self.show,
wait_time=self.wait_time,
pred_score_thr=self.score_thr,
step=total_curr_iter)
def after_test_iter(self, runner: Runner, batch_idx: int, data_batch: dict,
outputs: Sequence[DetDataSample]) -> None:
"""Run after every testing iterations.
Args:
runner (:obj:`Runner`): The runner of the testing process.
batch_idx (int): The index of the current batch in the val loop.
data_batch (dict): Data from dataloader.
outputs (Sequence[:obj:`DetDataSample`]): A batch of data samples
that contain annotations and predictions.
"""
if self.draw is False:
return
if self.test_out_dir is not None:
self.test_out_dir = osp.join(runner.work_dir, runner.timestamp,
self.test_out_dir)
mkdir_or_exist(self.test_out_dir)
for data_sample in outputs:
self._test_index += 1
img_path = data_sample.img_path
img_bytes = get(img_path, backend_args=self.backend_args)
img = mmcv.imfrombytes(img_bytes, channel_order='rgb')
out_file = None
if self.test_out_dir is not None:
out_file = osp.basename(img_path)
out_file = osp.join(self.test_out_dir, out_file)
self._visualizer.add_datasample(
osp.basename(img_path) if self.show else 'test_img',
img,
data_sample=data_sample,
show=self.show,
wait_time=self.wait_time,
pred_score_thr=self.score_thr,
out_file=out_file,
step=self._test_index)
@HOOKS.register_module()
class TrackVisualizationHook(Hook):
"""Tracking Visualization Hook. Used to visualize validation and testing
process prediction results.
In the testing phase:
1. If ``show`` is True, it means that only the prediction results are
visualized without storing data, so ``vis_backends`` needs to
be excluded.
2. If ``test_out_dir`` is specified, it means that the prediction results
need to be saved to ``test_out_dir``. In order to avoid vis_backends
also storing data, so ``vis_backends`` needs to be excluded.
3. ``vis_backends`` takes effect if the user does not specify ``show``
and `test_out_dir``. You can set ``vis_backends`` to WandbVisBackend or
TensorboardVisBackend to store the prediction result in Wandb or
Tensorboard.
Args:
draw (bool): whether to draw prediction results. If it is False,
it means that no drawing will be done. Defaults to False.
frame_interval (int): The interval of visualization. Defaults to 30.
score_thr (float): The threshold to visualize the bboxes
and masks. Defaults to 0.3.
show (bool): Whether to display the drawn image. Default to False.
wait_time (float): The interval of show (s). Defaults to 0.
test_out_dir (str, optional): directory where painted images
will be saved in testing process.
backend_args (dict): Arguments to instantiate a file client.
Defaults to ``None``.
"""
def __init__(self,
draw: bool = False,
frame_interval: int = 30,
score_thr: float = 0.3,
show: bool = False,
wait_time: float = 0.,
test_out_dir: Op
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
hooks.zip (9个子文件)
utils.py 737B
hooks.zip 19KB
visualization_hook.py 21KB
mean_teacher_hook.py 3KB
memory_profiler_hook.py 5KB
pipeline_switch_hook.py 2KB
num_class_check_hook.py 3KB
sync_norm_hook.py 1KB
set_epoch_info_hook.py 480B
共 9 条
- 1
资源评论
聚财猫猫
- 粉丝: 248
- 资源: 221
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功