犯困检测器需要一个命令行参数,后跟两个可选参数,每个参数的详细信息如下:
--shape-predictor :这是 dlib 的预训练面部标志检测器的路径。 您可以使用本博文底部的“下载”部
分将检测器和本教程的源代码一起下载。
--video:视频文件。本文用视频文件测试。
--alarm :您可以在此处选择指定要用作警报的输入音频文件的路径。
--webcam :此整数控制内置网络摄像头/USB 摄像头的索引。
定义了命令行参数,我们还需要定义几个重要的变量:
定义了 EYE_AR_THRESH。如果眼睛纵横比低于此阈值,我们将开始计算人闭上眼睛的帧数。
如果该人闭上眼睛的帧数超过 EYE_AR_CONSEC_FRAMES,我们将发出警报。
在实验中,我发现 0.3 的 EYE_AR_THRESH 在各种情况下都能很好地工作(尽管您可能需要为自己
的应用程序自己调整它)。
我还将 EYE_AR_CONSEC_FRAMES 设置为 48 ,这意味着如果一个人连续闭眼 48 帧,我们将播放
警报声。
您可以通过降低 EYE_AR_CONSEC_FRAMES 来使睡意检测器更敏感——同样,您可以通过增加它来
降低睡意检测器的敏感度。
定义了 COUNTER,即眼睛纵横比低于 EYE_AR_THRESH 的连续帧的总数。
如果 COUNTER 超过 EYE_AR_CONSEC_FRAMES ,那么我们将更新布尔值 ALARM_ON。
dlib 库附带了一个基于定向梯度的人脸检测器的直方图以及一个人脸地标预测器——我们在以下代
码块中实例化了这两个:
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor", required=True,
help="path to facial landmark predictor")
ap.add_argument("-v", "--video", type=str, default="",
help="path to input video file")
ap.add_argument("-a", "--alarm", type=str, default="",
help="path alarm .WAV file")
ap.add_argument("-w", "--webcam", type=int, default=0,
help="index of webcam on system")
args = vars(ap.parse_args())
# define two constants, one for the eye aspect ratio to indicate
# blink and then a second constant for the number of consecutive
# frames the eye must be below the threshold for to set off the
# alarm
EYE_AR_THRESH = 0.3
EYE_AR_CONSEC_FRAMES = 48
# initialize the frame counter as well as a boolean used to
# indicate if the alarm is going off
COUNTER = 0
ALARM_ON = False
- 1
- 2
- 3
- 4
- 5
- 6
前往页