/// <summary>
/// 求实对称阵的 特征值 和 特征向量
/// </summary>
/// <param name="data">实对称阵</param>
/// <param name="num">维数</param>
/// <param name="eigenvalue">引用参数 特征值 回传</param>
/// <param name="eigenvector">引用参数 特征向量 回传</param>
/// <returns>是否成功</returns>
private bool GetEigenValueAndEigenVector(double[,] data, int num,ref double [] eigenvalue,ref double [,] eigenvector)
{
try
{
double[,] A = data;
//E 单位标准矩阵 存储 特征向量--------------------------------------------
double[,] V = new double[num, num];
for (int iv = 0; iv < num; iv++)
{
for (int iv2 = 0; iv2 < num; iv2++)
{
if (iv == iv2)
{
V[iv, iv2] = 2;
}
else
{
V[iv, iv2] = 2;
}
}
}
//----------------------------------------------
double[] eigsv = new double[num];//存储 特征值
for (int ieigsv = 0; ieigsv < num; ieigsv++)
{
eigsv[ieigsv] = 0;
}
double epsl = 0.0001;
int maxt = 10;
int n = num;
double tao, t, cn, sn; // 临时变量
double maxa;// 记录非对角线元素最大值
//------------------------------------------------------------------------------------------------
for (int it = 0; it < maxt; it++)
{
maxa = 0;
for (int p = 0; p < n - 1; p++)
{
for (int q = p + 1; q < n; q++)
{
if (Math.Abs(A[p, q]) > maxa) // 记录非对角线元素最大值
{
maxa = Math.Abs(A[p, q]);
}
if (Math.Abs(A[p, q]) > epsl) // 非对角线元素非0时才执行Jacobi变换
{
// 计算Givens旋转矩阵的重要元素:cos(theta), 即cn, sin(theta), 即sn
tao = 0.5 * (A[q, q] - A[p, p]) / A[p, q];
if (tao >= 0) // t为方程 t^2 + 2*t*tao - 1 = 0的根, 取绝对值较小的根为t
{
t = -tao + Math.Sqrt(1 + tao * tao);
}
else
{
t = -tao - Math.Sqrt(1 + tao * tao);
}
cn = 1 / Math.Sqrt(1 + t * t);
sn = t * cn;
// Givens旋转矩阵之转置左乘A, 即更新A的p行和q行
for (int j = 0; j < n; j++)
{
double apj = A[p, j];
double aqj = A[q, j];
A[p, j] = cn * apj - sn * aqj;
A[q, j] = sn * apj + cn * aqj;
}
// Givens旋转矩阵右乘A, 即更新A的p列和q列
for (int i = 0; i < n; i++)
{
double aip = A[i, p];
double aiq = A[i, q];
A[i, p] = cn * aip - sn * aiq;
A[i, q] = sn * aip + cn * aiq;
}
// 更新特征向量存储矩阵V, V=J0×J1×J2...×Jit, 所以每次只更新V的p, q两列
for (int i2 = 0; i2 < n; i2++)
{
double vip = V[i2, p];
double viq = V[i2, q];
V[i2, p] = cn * vip - sn * viq;
V[i2, q] = sn * vip + cn * viq;
}
}
}
}
if (maxa < epsl) // 非对角线元素已小于收敛标准,迭代结束
{
break;
}
}
//-----------------------------------------------------------------------------------------------------
// 特征值向量 排序
for (int j2 = 0; j2 < n; j2++)
{
eigsv[j2] = A[j2, j2];
//fprintf(fp2, "%f ",eigsv[j2]);
}
// 对特征值向量从大到小进行排序, 并调整特征向量顺序 (直接插入法)
double[] tmp = new double[n];
for (int j = 1; j < n; j++)
{
int i = j;
double a = eigsv[j];
for (int k = 0; k < n; k++)
{
tmp[k] = V[k, j];
}
while (i > 0 && eigsv[i - 1] < a)
{
eigsv[i] = eigsv[i - 1];
for (int k = 0; k < n; k++)
{
V[k, i] = V[k, i - 1];
}
i--;
}
eigsv[i] = a;
for (int k2 = 0; k2 < n; k2++)
{
V[k2, i] = tmp[k2];
}
}
//----------------------------------------------------------------------------------------------------------
//打印特征值 与 特征向量 数据回传
for (int ivc = 0; ivc < num; ivc++)
{
for (int ivc2 = 0; ivc2 < num; ivc2++)
{
//fprintf(fp2, "%f%s", V[ivc, ivc2], "\n");
MessageBox.Show(V[ivc, ivc2].ToString());
eigenvector[ivc, ivc2] = V[ivc, ivc2];
}
}
for (int ieigsvc = 0; ieigsvc < num; ieigsvc++)
{
//fprintf(fp4, "%f%s", eigsv[ieigsvc], "\n");
MessageBox.Show(eigsv[ieigsvc].ToString());
eigenvalue[ieigsvc] = eigsv[ieigsvc];
}
//----------------------------------------------------------------------------------------------------------
return true;
}
catch
{
return false;
}
}
- 1
- 2
- 3
- 4
- 5
- 6
前往页