RecommenderSystemsForSocialTag


-
Recommender Systemsfor Social Tagging SystemsSocial tagging systems are Web 2.0 applications that promote user participation through facilitated content sharing and annotation of that content with freely chosen keywords, called tags. Despite the potential of social tagging to improve organization an
Leandro balby marinho. Andreas hotho Robert jaschke Alexandros nanopoulos Steffen rendle lars schmidt-Thieme Gerd Stumme. Panagiotis Symeonidis Recommender systems for Social Tagging Systems ② Springe er Leandro balby marinho Andreas hotho Federal University of Campina grande University of Wurzburg Brazil Ibmarinho@dsc. ufcg edu br Robert jaschke Alexandros Nanopoulos University of Kassel University of Hildesheim Germany Germany Steffen rendle Lars schmidt -Thieme University of Konstanz University of hildesheim Germany Germany Gerd Stumme Panagiotis Symeonidis University asse Aristotle University ermany greece ISSN2191-8112 e-ISsN2191-8120 ISBN978-1-4614-1893-1 e-ISBN978-1-4614-1894-8 DOI10.1007/978-1-4614-1894-8 Springer New York Dordrecht Heidelberg london Library of Congress Control Number: 2012931154 C The Author(s)2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher(Springer Science+ Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights Printed on acid-free paper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Social tagging systems are Web 2.0 applications that promote user participa tion through facilitated content sharing and annotation of that content with freely chosen keywords, called tags. Despite the potential of social tagging to improve organization and sharing of content, without efficient tools for con- tent filtering and search, users are prone to suffer from information overload as more and more users, content, and tags become available on-line. Recom mender systems are among the best known techniques for helping users to filter out and discover relevant information in large datasets. However, social tagging systems put forward new challenges for recommender systems since differently from the standard recommender setting where users are mainly interested in content- in social tagging systems users may additionally be interested in finding tags and even other users The goal of this book is to bring together important research in a new fam lly of recommender systems aimed at serving social tagging systems. While y no means exhaustive, the chapters introduce a wide variety of recent ap- proaches, from the most basic to the state-of-the-art, for providing recom mendations in social tagging systems. The focus is on tag recommendations and tag-aware recommendations, which are the prevalent recommendation tasks in the literature and real-world social tagging systems. The material covered in the book is aimed at graduate students, teachers, researchers, and practitioners in the areas of web mining, e-commerce, information retrieval and machine learning The idea for this book emerged from a long history of fruitful cooperation between the authors, who have been actively contributing in many of the topics covered in this book. Many parts of the book are built on top of the authors' previous book chapter entitled Social Tagging Recommender Systems published in the Recommender Systems Handbook in 2011; which triggered the cooperation with Springer for extending it into a book The book is organized into three parts. Part I provides introductory ma- terial on social tagging systems and recommender systems. Part II presents a wide variety of recommendation techniques, ranging from the most basic Preface methods to the state-of-the-art, as well as strategies for evaluating these rec ommender systems. Part IiI provides a detailed case study on the technical aspects of deploying and evaluating recommender systems in BibSonomy, a real-world social tagging system of bookmarks and scientific references Contents Part I foundations 1 Social Tagging Systems 1.1 Introduction 1.2 Folksonomies 1.3 Tag Clouds 1. 4 Data Representation 1.4.1 Folksonomies as Tensors 1.4.2 Folksonomies as Hypergraphs 334556678 1.5 Recommendation Tasks in STS 1.5.1 User Recommendation 1.5.2 Resource recommendation 1.5.3 Tag Recommendation 1.6 Recommendations in Social Tagging Systems ...10 1.6.1 Bibsonomy 10 1.6.2 CiteULike 11 1.6.3 Other Systems 12 1. 7 Notation 1. 8 Further reading 14 References 14 2 Recommender Systems 17 2.1 Rating and Item Prediction 17 2.2 Rating Prediction as Regression Problem 18 2.3 Item Prediction as Ranking problem .21 2.4 User and Item Attributes 23 2.5 New User and New Item Problems 24 2.6 Context-aware and Multi-Mode recommendations References 27 11 Contents Part II Recommendation Techniques for Social Tagging Systems 3 Baseline Techniques 33 3.1 Constant Models 33 3.1.1 Tag Recommendation 33 3.1.2 User/Tag-aware Recommendation 34 3.1.3 Remarks on Complexity 34 3.2 Projection Matrices 3.3 Projection-based Collaborative Filtering 35 36 3.3.1 Tag Recommendations 36 3.3.2 Tag-aware Recommendations 37 3.3.3 User recommendations 38 3.3.4 Remarks on Complexity 39 3. 4 Further reading 39 References 41 4 Advanced Techniques .43 4.1 Factorization models 43 4.1.1 Higher Order Singular Value Decomposition HOSVD on Tensors 4.1.2 Scalable Factorization models 51 4.1.3 Learning Tag Recommendation Models ) 4.2 Graph-based Models 57 4.2.1 PageRank-based Recommendations in STS 4.2.2 Relational Neighbors for Tag Recommendations 4.3 Content and social-Based models 63 4.3.1 Exploiting the Content of resources 4.3.2 Exploiting Social Relations 65 4.4 Further readin 69 References 70 5 ffline evaluation 5.1 Evaluation metrics 5.1.1 Precision and recall 5.1.2 Further measures 76 5.2 Evaluation Protocols 76 5.2.1 LeavePostOut Methodology 76 5.2.2 Time-based Splits 5.3 Comparison of Tag Re recommenders 77 References Part III Implementing Recommender Systems for Social Tagging 6 Real World Social Tagging Recommender systems 6.1 Introduction 6.2 Challenges and requirements 85 Contents 6.3 The BibSonomy Social Tagging System 86 6.4 Architecture 87 6.4.1 Overview 87 6.4.2 Recommender interface 88 6.4.3 Logging 6.5 Recommender Implementations 6.5.1 Meta Recommender 90 6.5.2 Multiplexing Tag recommender 6.5.3 Example recommender Implementations 92 6.6 Further reading References 94 7 Online evaluation 97 7.1 Evaluation Setting 97 7.1.1 Metrics and Protocols 97 7.1.2 Preprocessing and Cleansing 97 7. 2 Case Study ..98 7.2.1 General Results 98 7.2.2 Influence of the reload, Button 7.2.3 Logged click' Events 7.2.4 Average F1-Measure per User 102 7.3 The ECML PKDD Discovery Challenge 2009 103 7.3.1 Setting 104 7.3.2 Methods ..104 7.3.3 Results .105 7.4 Conclusion 107 References 108 8 Conclusions 8.1 Summary.… 109 8.2 Discussion and Outlook 110 References 111

C语言入门--必须基础17讲
2017-07-28适合没有基础的人群学习C语言,简单的入门教程。帮助小白理解什么是开发,什么是编程。做的很简单,很多细节没有详细讲解,不适合用来深入研究。学了这个,你能理解什么是编程,什么是C语言。
5.8MB
2020美赛C题题目.rar
2020-03-06Problem C: 电商里的数据财富 在电商市场中,亚马逊为消费者提供了对购买商品的评价(打分和评论)的服务。个人评级,又称为“星级评级”,意思是允许消费者使用1(低分差评,低满意度)到5(高分好评
89KB
html制作的登录界面
2011-05-12html制作的登录界面html制作的登录界面html制作的登录界面html制作的登录界面html制作的登录界面html制作的登录界面html制作的登录界面html制作的登录界面
Java系列技术之JavaWeb入门
2018-09-18JavaWeb里的基础核心技术
793.88MB
7套JavaWeb毕业设计+教程
2020-10-157套JavaWeb毕业设计+教程,包括:1.源代码;2数据库;3.模块解析;4.视频教程;5.项目截图
19.9MB
谷粒商城官方笔记(基础高级集群).rar
2020-07-27谷粒商城官方笔记,很好的配套资料,更多笔记可以去我专栏找https://blog.csdn.net/hancoder/category_10147715.html
1.70MB
微信抽奖源码PHP前后台+转盘+数据库完整示例
2020-01-14微信抽奖源码PHP前后台+转盘+数据库完整示例
308KB
研究论文-一种新的WIMAX标准LDPC码的软判决译码算法.pdf
2019-08-07WIMAX标准下的LDPC码采用准循环编码方式,其译码多为和积(SP)译码算法。为了进一步降低译码复杂度,通过大量仿真分析获得最优乘性因子的值,并推导出近似线性公式,提出了一种改进型的归一化最小和(M
9KB
侯捷C++全套课程视频资源
2019-06-06侯捷全套课程,C++11新标准,侯捷 - C++面向对象高级开发,侯捷 - STL和泛型编程,C++内存管理_侯捷
程序员的数学:微积分
2019-09-28本课程介绍程序员必备的数学基础内容,在取材上侧重人工智能、数据分析等热门领域
Java小白修炼手册
2019-12-28Java是一门面向对象编程语言,不仅吸收了C++语言的各种优点,还摒弃了C++里难以理解的多继承、指针等概念,因此Java语言具有功能强大和简单易用两个特征。Java语言作为静态面向对象编程语言的代表,极好地实现了面向对象理论,允许程序员以优雅的思维方式进行复杂的编程。 课程讲从零开始讲解Java 语言,小白快速入门学习的必修课!
174KB
2018美赛C题详细思路
2018-02-112018美赛C题思路,严谨科学,学科竞赛必备,论文请自己完成
1.71MB
2019年美赛A题特等奖论文(中文版).pdf
2020-04-08本文为2019年美赛A题特等奖论文中文版,好不容易找到的资源分享给大家,供大家学习。
《C语言/C++学习指南》语法篇(从入门到精通)
2015-06-03一门初级、从入门到精通的C语言C++语法教程,由毕业于清华大学的业内人士执课。从简单的HelloWorld入门程序,到深入的C语言C++核心概念,均为您娓娓道来,言之必详、听之必懂。让C语言C++编程变得简单,让C语言C++编程变得有趣,让喜欢C语言C++的人学会C语言C++!
-
博客
10.19L 605. 种花问题
10.19L 605. 种花问题
-
博客
php 随机生成字符串
php 随机生成字符串
-
博客
LeetCode: 78. 子集
LeetCode: 78. 子集
-
下载
W3School离线手册_2.7z
W3School离线手册_2.7z
-
下载
微纳遥感相机一体式超轻主支撑结构优化设计
微纳遥感相机一体式超轻主支撑结构优化设计
-
下载
《大家的日语》第1课.pdf
《大家的日语》第1课.pdf
-
博客
Bryce1010程序员周报
Bryce1010程序员周报
-
学院
21年新消息队列RabbitMQ视频教程AMQP教程
21年新消息队列RabbitMQ视频教程AMQP教程
-
学院
算法导论二(排序和顺序统计量)——编程大牛的必经之路
算法导论二(排序和顺序统计量)——编程大牛的必经之路
-
下载
数字闭环全光纤电流互感器的信号处理
数字闭环全光纤电流互感器的信号处理
-
学院
阿里云云计算ACP考试必备教程
阿里云云计算ACP考试必备教程
-
下载
面向大容量存储的SpaceWire传输层协议设计
面向大容量存储的SpaceWire传输层协议设计
-
博客
hdl_graph_slam 调试遇到的问题解决
hdl_graph_slam 调试遇到的问题解决
-
学院
多线程与线程池技术详解(图书配套)
多线程与线程池技术详解(图书配套)
-
下载
Demonstration of high-dimensional free-space data coding/decoding through multi-ring optical vortices
Demonstration of high-dimensional free-space data coding/decoding through multi-ring optical vortices
-
博客
java中的内置注解,元注解与自定义注解
java中的内置注解,元注解与自定义注解
-
学院
python办公自动化技巧
python办公自动化技巧
-
下载
visual c++ vc制作仿windows资源管理器web视图界面.zip
visual c++ vc制作仿windows资源管理器web视图界面.zip
-
学院
Appium自动化测试套餐
Appium自动化测试套餐
-
博客
MHA集群
MHA集群
-
学院
Selenium3分布式与虚拟化
Selenium3分布式与虚拟化
-
博客
哈夫曼树的编码
哈夫曼树的编码
-
博客
通过 WASM 实现优雅高效的 TiDB UDF
通过 WASM 实现优雅高效的 TiDB UDF
-
博客
计算机视觉与深度学习 | 基于Faster R-CNN的目标提取(源代码)
计算机视觉与深度学习 | 基于Faster R-CNN的目标提取(源代码)
-
下载
OFDM-OAM光信号在大气湍流中的传输
OFDM-OAM光信号在大气湍流中的传输
-
博客
JAVA基础 (一维数组)
JAVA基础 (一维数组)
-
博客
顺序表和链表(c++)
顺序表和链表(c++)
-
博客
IO流
IO流
-
博客
8 个提升 Python 数据分析效率的代码技巧
8 个提升 Python 数据分析效率的代码技巧
-
博客
spring boot 接口生成Sign签名
spring boot 接口生成Sign签名