VIP会员
作者:CSDN
出版社:CSDN《程序员》
ISBN:1111111111117
VIP会员免费
(仅需0.8元/天)
¥ 40000.0
温馨提示: 价值40000元的1000本电子书,VIP会员随意看哦!
电子书推荐
-
(数据挖掘三部曲3)HADOOP实战第二版中文清晰版 评分:
hadoop实战中文版,十分清晰,hadoop入门必备的书籍,想学hadoop的快来下载吧
上传时间:2015-10 大小:39.86MB
- 14.98MB
数据分析方法论三步曲
2018-09-18从理论到深度案例分析,成为数据分析师你只需要三步!
- 40.60MB
深入浅出Hadoop Mahout数据挖掘实战(算法分析、项目实战、中文分词技术) 课件+代码 共17个章节.rar
2023-12-03【课程大纲】第01课-Mahout数据挖掘工具(1) 共9页第02课-Mahout数据挖掘工具(2) 共9页第03课-Mahout数据挖掘工具(3) 共12页第04课-Mahout数据挖掘工具(4) 共9页第05课-Mahout数据挖掘工具(5) 共11页第06课-Mahout...
- 10.2MB
数据挖掘.rar
2013-10-09数据挖掘--概念与技术.pdf 银行软件开发必备知识压缩版.pdf 中国银行业务知识汇编.pdf
- 1.67MB
深入浅出Hadoop Mahout数据挖掘实战 第13课-Hadoop综合实战-文本挖掘项目(3) 共11页.pptx
2023-12-03【课程大纲】第01课-Mahout数据挖掘工具(1) 共9页第02课-Mahout数据挖掘工具(2) 共9页第03课-Mahout数据挖掘工具(3) 共12页第04课-Mahout数据挖掘工具(4) 共9页第05课-Mahout数据挖掘工具(5) 共11页第06课-Mahout...
- 3.48MB
第四章(Hadoop大数据处理实战)Hadoop分布式文件系统.pdf
2022-06-27第四章(Hadoop大数据处理实战)Hadoop分布式文件系统.pdf第四章(Hadoop大数据处理实战)Hadoop分布式文件系统.pdf第四章(Hadoop大数据处理实战)Hadoop分布式文件系统.pdf第四章(Hadoop大数据处理实战)Hadoop分布式文件...
- 2.3MB
第二章(Hadoop大数据处理实战)搭建Hadoop分布式集群.pdf
2022-06-27第二章(Hadoop大数据处理实战)搭建Hadoop分布式集群.pdf第二章(Hadoop大数据处理实战)搭建Hadoop分布式集群.pdf第二章(Hadoop大数据处理实战)搭建Hadoop分布式集群.pdf第二章(Hadoop大数据处理实战)搭建Hadoop分布式...
- 43.99MB
Hadoop权威指南中文版(第二版)+Hadoop in Action
2012-06-01《Hadoop权威指南中文版(第二版)》与《Hadoop in Action》及《Pro Hadoop》这三本书是深入理解和掌握Hadoop生态系统的关键资源。Hadoop作为一个分布式计算框架,其核心是解决大规模数据处理的问题,它允许在廉价...
- 38.17MB
hadoop 实战 中文版
2011-12-13《Hadoop实战》中文版是一本深入探讨Apache Hadoop生态系统技术的书籍,旨在帮助读者理解和掌握分布式计算的核心概念以及在实际项目中的应用。Hadoop Action是本书的副标题,暗示了其强调实践性的特点,旨在通过具体...
- 22.26MB
Hadoop权威指南 第二版(中文版)
2013-03-28第3章 Hadoop分布式文件系统 HDFS的设计 HDFS的概念 数据块 namenode和datanode 命令行接口 基本文件系统操作 Hadoop文件系统 接口 Java接口 从Hadoop URL中读取数据 通过FileSystem API读取...
- 20.19MB
HADOOP硬实战2
2015-11-20《Hadoop硬实战》收集了85个问题场景以及解决方案的实战演练。在关键问题领域对基础概念和实战方法做了权衡,例如导入导出、序列化,以及LZO压缩。你将会学习到每个技术的细节,以及当遇到一个具体问题时能够给出...
- 473KB
Python数据分析实践:pandas读写html表格数据new.pdf
2022-06-142022/3/6 4.3 pandas读写html表格数据 4.3.5 读取html表格数据-read_html函数 谈及pandas的read.xxx系列的函数,常用的读取数据方法为:pd.read_csv() 和 pd.read_excel() ,而 pd.read_html() 这个方法虽然少用,但它的功能 非常强大,特别是用于抓取Table表格型数据,无需掌握正则表达式或者xpath等工具,短短的几行代码就可以将网页数据快速抓取下来并保存到本 地。 读取网页数据这种操作被称为网页抓取,应用比较广泛,它逐渐演变成数据分析过程中的一项基础操作,被整合到了数据分析的第一步-数据挖掘 和数据准备。一般的爬虫套路无非是发送请求、获取响应、解析网页、提取数据、保存数据等步骤。构造请求主要用到requests库,定位提取数据 用的比较多的有xpath和正则匹配。一个完整的爬虫,代码量少则几十行,多则百来行,对于新手来说学习成本还是比较高的。 针对网页结构类似的表格类型数据,pd.read_html()可以将网页上的表格都抓取下来,并以DataFrame的形式装在一个列表中返回。具体是这么个流
- 12.37MB
【Python实战】-Python+Opencv是实现车牌自动识别(源码+数据+字符匹配模板)
2024-03-09在这个实战项目中,我们将利用Python结合OpenCV库来实现车牌识别功能。整个过程涵盖图像预处理、车牌定位、车牌字符分割以及模板匹配识别等关键步骤,对智能交通、车辆管理等实际应用领域具有显著价值。 首先,我们需要对获取的车辆图像进行预处理,这通常包括灰度化、二值化、滤波去噪等操作,以便更好地凸显车牌区域。接着,利用OpenCV的图像处理功能,我们可以实现车牌定位。这通常涉及边缘检测、轮廓查找以及形态学操作,以准确提取出车牌区域。 在车牌定位完成后,我们需要对车牌进行字符分割。这一步的目的是将车牌中的每个字符独立提取出来,以便后续进行识别。常用的字符分割方法包括垂直投影法、滑动窗口法等。通过这些方法,我们可以将车牌图像划分为多个字符区域。 最后,我们利用模板匹配的方法对分割出的字符进行识别。通过预先准备的字符模板库,我们将每个字符区域与模板库中的字符进行匹配,从而确定字符的具体内容。经过这一过程,我们可以得到完整的车牌号码。 该项目不仅可用于车牌识别技术的学习和研究,还具有实际应用价值。通过自动识别车牌号码,我们可以实现车辆追踪、违章查询、停车场管理等功能,从而提高交通管理的
- 341KB
Python基于机器学习实现的股票价格预测、股票预测源码+数据集,机器学习大作业
2023-04-18python数据分析,因为股票价格的影响因素太多,通过k线数据预测未来的价格变化基本不可行,只有当天之内的数据还有一定的关联,故feature与target都选择的是当天的数据。 加载数据 为了加快数据的处理速度,提前将mariadb数据库中的数据查询出来,保存成feather格式的数据,以提高加载数据的速度。 经过处理,不同股票的数据保存在了不同的文件中,列名还保持着数据库中的字段名。我选择了股票代码为sh600010的这只股票作为数据分析的数据来源。预测出来的结果与真实值变化趋势相近,说明线性回归模型在一定程度上能够解释收盘价与选取的feature之间的关系
- 162.28MB
时间序列数据集TSdatasets.rar
2024-02-13内含常用时间序列预测数据集如:ETT(电力变压器温度)、Traffic(交通数据集)、Electricity(电力消耗数据集)、Exchage_rate(汇率数据集)、Weather(天气数据集)、PEMS、Solar等数据集
- 1KB
Fragstats V4.2 软件计算景观指数的参数文件示例
2023-12-18Fragstats V4.2 软件计算景观指数的参数文件示例。
- 143.21MB
抖音用户浏览行为数据集
2024-02-15抖音用户浏览行为数据集 文章: [ 数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(一)](https://blog.csdn.net/m0_53054984/article/details/136121177) [ 数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(二)](https://blog.csdn.net/m0_53054984/article/details/136123131) [ 数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(总)](https://blog.csdn.net/m0_53054984/article/details/136122988) [ 数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(代码部分)](https://blog.csdn.net/m0_53054984/article/details/136455033)
- 1.2MB
5-8抖音数据分析数据集
2023-05-08这个数据集对应我写的一篇博客,下载此数据集即可运行我的代码。
- 1.23MB
两阶段鲁棒优化/综合能源系统/需求响应/微电网/多目标优化/优化调度matlab-yalmip-cplex/gurobi文章复现
2022-08-04基于多目标灰狼的冷热电联拱型微电网允许优化/ 考虑用户侧柔性负荷的社区综合能源系统日前优化调度(完美复现)matlab-yalmip-cplex/gurobi代码/ 基于场景的多区域综合能源优化调度(随机优化)(完美复现)matlab-yalmip-cplex/gurobi代码/ 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化(完美复现)matlab-yalmip-cplex/gurobi代码/ 基于概率距离的场景快速削减法的风光场景生成与削减方法/ 微电网两阶段鲁棒优化经济调度方法(完美复现)matlab-yalmip-cplex/gurobi非答疑版本/ 两阶段鲁棒优化入门到编程/ 并网型微电网光储协同优化调度/matlab-yalmip-cplex/ 含集群电动汽车的微电网多种需求侧资源经济协同调度/
- 1.12MB
新闻数据集(对应新闻文本分类案例)
2023-03-19该新闻数据集与 https://blog.csdn.net/weixin_47176703/article/details/124304692?spm=1001.2014.3001.5501此篇python项目-新闻文本分类详细对应,代码详尽,读者可自取实现。
- 5.75MB
SPSS中介效应分析插件(Process和mediate插件)
2022-03-09包含Process和mediate插件
- 829B
regress函数实例代码
2024-01-15regress函数功能十分强大,它可以用来做多元线性回归分析,它不仅能得出线性回归函数中各个系数,还会返回一系列有意义的统计参数,有助于我们对回归函数的分析。本文件包含regress函数实例代码一份。
- 104.35MB
基于在线教学平台的数据挖掘与学习行为分析超星集团数据集
2024-03-23基于在线教学平台的数据挖掘与学习行为分析超星集团数据集
- 13.85MB
2001-2021中国城市统计年鉴数据(EXCEL数据面板)
2022-05-08县区+地级市 中国城市统计年鉴数据2001-2021(EXCEL数据面板)
- 27.17MB
2022年mathercup数学建模比赛d题题解
2022-04-182022年mathercup数学建模比赛d题题解,其中包含思路和论文代码。
- 208B
回归分析数据women.csv
2023-11-09回归分析数据women.csv
- 5KB
停用词文件 stopwords.txt
2023-07-02自然语言处理,中文停用词
- 3.36MB
R语言期末大作业(全面带报告,带数据集)
2022-05-24按照后期进行数据分析的需求,对数据进行预处理。 -描述性统计:选择合适的方法对数据进行统计分析。包括对数值型和类别型属性的统计,并对分析结果进行图形化的展示(使用ggplot2或者lattice包)。 -推断性统计:选择合适的假设检验方法,分析属性间的相关性、两组数据间是否具有显著性差异,分析结果并给出结论及必要的图形展示。 - 数据挖掘 根据数据特征及需求,利用分类、聚类或时间序列方法挖掘蕴含在数据中的模式及必要的图形展示,用回归模型预测走势 注意:对聚类结果分析聚簇特征 对分类结果计算准确性。 使用时间序列分析方法可判断数据是否存在趋势、周期性等特征,或对数据进行预测。 (分类、聚类、时间序列,回归模型至少使用2种方法)
- 113KB
开源代码分享(1)-考虑经济性的储能运行优化(matlab代码)
2023-06-05参考文献: [1]Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage - ScienceDirect [2]Towards an objective method to compare energy storage technologies: development and validation of a model to determine the upper boundary of revenue available from electrical price arbitrage 这份代码做的是储能的运行优化,以经济效益最大为目标。使用了三种不同的方法求解储能最优运行策略。 1 运行策略搜索 2.蒙特卡洛模拟法 3.fmincon函数优化方法
- 122KB
分类分析数据集-bc-data.csv"
2023-11-11分类分析数据集-bc-data.csv"
- 33.37MB
VOSviewer 1.6.20使用手册双语版
2024-05-14VOSviewer 1.6.20使用手册英文版+中文翻译;大致对着看一下,机器翻译,如有不恰之处,请谅解,以英文表达为准