Optimal State Estimation Kalman, H,, and Nonlinear Approaches

-
本书较为全面的介绍了最优状态估计的方法,适合作为最优状态估计相关领域工程技术人员参考著作,也可作为相关课程的高年级本科生或研究生教材
Optimal State Estimation This page Intentionally left blank Optimal State Estimation Kalman, Hoo, and Nonlinear approaches Dan simon Cleveland State University 少 WILEY INTERSCIENCE A JoHN WiLEY sons INc. publication Copyright o 2006 by John Wiley sons, Inc. All rights reserved iblished by John Wiley Sons, Inc, Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc, 222 Rosewood Drive, Danvers, MA01923, (978)750-8400, fax(978)646-8600,oronthewebatwww,copyright.com.RequeststothePublisherforpermission should be addressed to the Permissions Department, John Wiley sons, Inc., 11 1 River Street Hoboken,NJ07030,(201)748-6011,fax(201)748-6008 or online at http://www.wiley.com/go/permission Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to th accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other dar For general information on our other products and services or for technical support, please contact our Customer Care Department within the U.S. at(800)762-2974, outside the U.s.at(317)572 3993 or fax(317)572-4002 Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic format. For information about wiley products, visit our web site at www.wiley.com Library of Congress Cataloging-in-Publication is available. ISBN-139780471-708582 ISBN-100-471-70858-5 Printed in the United States of america 10987654321 CONTENTS Acknowledgments XIIl Acronyms XV List of algorithms XVIl Introduction PART INTRODUCTORY MATERIAL 1 Linear systems theory 1.1 Matrix algebra and matrix calculus 4 1. 1. 1 Matrix algebra 6 1.1.2 The matrix inversion lemma 1.1.3 Matrix calculus 14 1.1.4 The history of matrices 17 1.2 Linear systems 18 1.3 Nonlinear systems 22 1.4 Discretization 26 1.5 Simulation 27 1.5. 1 Rectangular integration 1.5.2 Trapezoidal integration 1.5.3 Runge-Kutta integration 31 1.6 Stabilit 33 CONTENTS 1.6. 1 Continuous-time systems 33 1.6.2 Discrete-time systems 37 1.7 Controllability and observability 38 1.7, 1 Controllability 1.7.2 Observabili 40 1.7. 3 Stabilizability and detectability 43 1.8 Summary 45 Proble 2 Probability theory 49 2.1 Probabilit 50 2.2 Random variables 53 2.3 Transformations of random variables 59 2. 4 Multiple random variables 61 2.4.1 Statistical independence 62 2.4.2 Multivariate statistics 2.5 Stochastic Processes 68 2.6 White noise and colored noise 71 2.7 Simulating correlated noise 73 2.8 Summary 74 Problems 75 3 Least squares estimation 3.1 Estimation of a constant 80 3.2 Weighted least squares estimation 82 3.3 Recursive least squares estimation 84 3.3.1 Alternate estimator forms 3.3.2 Curve fitt 92 3.4 Wiener fltering 94 3.4. 1 Parametric filter optimization 3.4.2 General filter optimization 97 3.4. 3 Noncausal filter optimization 98 3.4.4 Causal filter optimization 3.4.5 Comparison 101 3.5 Summary 102 Problems 102 4 Propagation of states and covariances 107 4.1 Discrete-time systems 107 4.2 Sampled-data systems 111 4.3 Continuous-time systems 114 CONTENTS 4.4 Summary 117 Problems 117 PART THE KALMAN FILTER 5 The discrete-time Kalman filter 123 5.1 Derivation of the discrete-time Kalman filter 124 5.2 Kalman filter properties 129 5. 3 One-step Kalman filter equations 131 5.4 Alternate propagation of covariance 135 5.4.1 Multiple state systems 135 5.4.2 Scalar systems 137 5.5 Divergence issues 139 5.6 Summary 144 Problems 145 6 Alternate Kalman filter formulations 149 6. 1 Sequential Kalman filtering 150 6.2 Information filtering 156 6. 3 Square root filtering 158 6.3.1 Condition number 159 6.3.2 The square root time-update equation 162 6.3.3 Potters square root measurement-update equation 165 6.3.4 Square root measurement update via triangularization 169 6.3.5 Algorithms for orthogonal transformations 6.4 U-D filtering 174 6.4.1 U-D iltering: The measurement-update equation 174 6.4.2 U-D filtering: The time-update equation 176 6.5 Summary 178 Problems 179 7 Kalman filter generalizations 183 7. 1 Correlated process and measurement noise 184 7. 2 Colored process and measurement noise 188 7.2.1 Colored process noise 188 7.2.2 Colored measurement noise: State augmentation 189 7.2. 3 Colored measurement noise: Measurement differencing 190 7. 3 Steady-state filtering 193 7.3.1 a-B filtering 199 7.3.2 a-By filtering 202 7.3.3 A Hamiltonian approach to steady-state filtering 203 7.4 Kalman filtering with fading memory 208 CONTENTS 7.5 Constrained Kalman filtering 212 7.5.1 Model reduction 212 7.5.2 Perfect measurements 213 7.5.3 Projection approaches 214 7.5.4 A pdf truncation approach 218 7. 6 Summar 223 Problems 225 8 The continuous-time Kalman filter 229 8. 1 Discrete-time and continuous-time white noise 230 8. 1.1 Process noise 230 8.1.2 Measurement noise 232 8.1.3 Discretized simulation of noisy continuous-time systems 232 8.2 Derivation of the continuous-time Kalman filter 233 8.3 Alternate solutions to the Riccati equation 238 8.3. 1 The transition matrix approach 238 8.3.2 The Chandrasekhar algorithm 242 8.3.3 The square root filter 246 8.4 Generalizations of the continuous-time flter 247 8.4.1 Correlated process and measurement noise 248 8.4.2 Colored measurement noise 249 8.5 The steady-state continuous-time Kalman filter 252 8.5. 1 The algebraic Riccati equation 253 8.5.2 The Wiener flter is a Kalman filter 257 8.5. 3 Duality 258 8.6 Summary 259 Problems 260 9 Optimal smoothing 263 9. 1 An alternate form for the Kalman flter 265 9.2 Fixed-point smoothing 267 9.2.1 Estimation improvement due to smoothing 270 9.2.2 Smoothing constant states 274 9.3 Fixed-lag smoothing 274 9.4 Fixed-interval smoothing 279 9.4.1 Forward-backward smoothing 280 9.4.2 RTS smoothing 9.5 Summary 294 Problems 294

-
2019-08-24
20.64MB
Optimal State Estimation Kalman, H infinity, and Nonlinear Approaches
2015-03-06Optimal State Estimation Kalman, H infinity, and Nonlinear Approaches kalman pdf+代码
- 【读书笔记】-最优状态估计 Optimal State Estimation Kalman, H,, and Nonlinear Approaches 【Dan Simon】 11872019-08-21Overview: 特点: "This book is obviously written with care and reads very easily. A very valuable resource for students, teachers, and practitioners…highly recommended." "The dozens of helpful step-...
22.32MB
Optimal State Estimation Kalman H Infinity and Nonlinear Approaches
2016-11-20Optimal State Estimation Kalman H Infinity and Nonlinear Approaches
22.96MB
Optimal State Estimation Kalman, H-infinity, and Nonlinear Approaches
2014-03-21该书内容非常全面,涵盖了多种卡尔曼滤波算法及MATLAB实现,作者将多年的工作经验融入此书,使之成为学习卡尔曼滤波的同学一本不可多得的经典参考书。
Optimal State Estimation(最优状态估计)下载_course
2020-07-29Dan Simon的经典大作《Optimal State Estimation》对应的Matlab源程序。包含了基本的线性Kalman滤波、EKF、UKF、粒子滤波等基本算法。适合学习滤波理论的人员。
120KB
Kalman滤波与H-infinity滤波的对比
2008-11-24一篇关于滤波不错的文章,着重介绍了Kalman与H无穷滤波的异同
70.31MB
最优状态估计 卡尔曼,H∞及非线性滤波
2017-08-08最优状态估计 卡尔曼,H∞及非线性滤波(中文)最优状态估计 卡尔曼最优状态估计 卡尔曼最优状态估计 卡尔曼最优状态估计 卡尔曼
3KB
Kalman.zip
2019-06-18利用MATLAB实现基于卡尔曼滤波的目标跟踪识别算法,使用“当前统计”模型,代码可直接运行
-
学院
【数据分析-随到随学】互联网行业业务指标及行业数
【数据分析-随到随学】互联网行业业务指标及行业数
-
博客
【Java - L - 0103】m - 二叉树的锯齿形层序遍历
【Java - L - 0103】m - 二叉树的锯齿形层序遍历
-
学院
Go语言官方文档学习笔记(第四季)
Go语言官方文档学习笔记(第四季)
-
下载
自用PyCharm配色方案
自用PyCharm配色方案
-
学院
web前端开发规范
web前端开发规范
-
学院
Cocos Creator游戏开发-连连看 (接入腾讯优量汇广告)
Cocos Creator游戏开发-连连看 (接入腾讯优量汇广告)
-
下载
爬虫实战与数据处理实验报告
爬虫实战与数据处理实验报告
-
博客
(2021/1/16)验证歌德巴赫猜想
(2021/1/16)验证歌德巴赫猜想
-
博客
opencv库识别QR二维码-QT
opencv库识别QR二维码-QT
-
博客
本地 mysql 服务启动失败 解决办法
本地 mysql 服务启动失败 解决办法
-
博客
Ajax:服务器相应的数据格式
Ajax:服务器相应的数据格式
-
博客
Soul网关源码学习(2)- Http代理的配置和测试
Soul网关源码学习(2)- Http代理的配置和测试
-
学院
彻底学会Python装饰器
彻底学会Python装饰器
-
下载
计算机网络总结知识点
计算机网络总结知识点
-
下载
win7&win10文件透明加解密.rar
win7&win10文件透明加解密.rar
-
下载
mysql-5.5.40-win64安装包
mysql-5.5.40-win64安装包
-
博客
[小小明]Python正则表达式入门笔记(2万字干货,历时100小时整理)
[小小明]Python正则表达式入门笔记(2万字干货,历时100小时整理)
-
博客
2021-01-16
2021-01-16
-
学院
Java星选一卡通
Java星选一卡通
-
博客
02 - 面向对象—基础~什么是面向对象、面向对象思想、对象的内存分析、构造方法及方法的重载
02 - 面向对象—基础~什么是面向对象、面向对象思想、对象的内存分析、构造方法及方法的重载
-
学院
FFmpeg4.3系列之26:视频监控之H265多路摄像头播控项目实战
FFmpeg4.3系列之26:视频监控之H265多路摄像头播控项目实战
-
博客
docker安装php开发环境
docker安装php开发环境
-
下载
FS4059A资料5V升压8.4V双节锂电池串联充电IC.pdf
FS4059A资料5V升压8.4V双节锂电池串联充电IC.pdf
-
下载
LinkedList.zip
LinkedList.zip
-
博客
HDLbits答案(6 Verification: Reading Simulation + 7 Verification: Writing Testbenches)
HDLbits答案(6 Verification: Reading Simulation + 7 Verification: Writing Testbenches)
-
下载
win10文件透明加解密.rar
win10文件透明加解密.rar
-
博客
2021-01-16
2021-01-16
-
下载
实验一网络安全顶级会议论文下载.doc
实验一网络安全顶级会议论文下载.doc
-
下载
windows 开机画面Cortana
windows 开机画面Cortana
-
博客
分布式发布-订阅消息系统--Kafka简介and安装
分布式发布-订阅消息系统--Kafka简介and安装