img
share 分享

VIP会员

作者:CSDN

出版社:CSDN《程序员》

ISBN:1111111111117

VIP会员免费 (仅需0.8元/天) ¥ 40000

温馨提示: 价值40000元的1000本电子书,VIP会员随意看哦!

电子书推荐

更多资源 展开
热门图书

Hadoop实战(第2版) 评分:

Hadoop是一个开源的MapReduce平台,设计运行在大型分布式集群环境中,提供查询和分析服务。尤其适用于大数据系统,Hadoop为苹果、eBay、LinkedIn、雅虎和Facebook等公司提供重要软件环境。它为开发者进行数据存储、管理以及分析提供便利的方法。   《Hadoop硬实战》收集了85个问题场景以及解决方案的实战演练。在关键问题领域对基础概念和实战方法做了权衡,例如导入导出、序列化,以及LZO压缩。你将会学习到每个技术的细节,以及当遇到一个具体问题时能够给出对应的解决方案。本书提供了结构良好且易于理解的例子,可用于应对你所遇到的问题。   《Hadoop硬实战》包含:   ·Hadoop和MapReduce的基本概念   ·85个实战和测试技术   ·真实的场景,实用的解决方案   ·如何整合MapReduce和R 前言 致谢 关于本书 第1 部分 背景和基本原理 1 跳跃中的Hadoop 1.1 什么是Hadoop 1.1.1 Hadoop 的核心组件 1.1.2 Hadoop 生态圈 1.1.3 物理架构 1.1.4 谁在使用Hadoop 1.1.5 Hadoop 的局限性 1.2 运行Hadoop 1.2.1 下载并安装Hadoop 1.2.2 Hadoop 的配置 1.2.3 CLI 基本命令 1.2.4 运行MapReduce 作业 1.3 本章小结 第2 部分 数据逻辑. 2 将数据导入导出Hadoop. 2.1 导入导出的关键要素 2.2 将数据导入Hadoop . 2.2.1 将日志文件导入Hadoop 技术点1 使用Flume 将系统日志文件导入HDFS 2.2.2 导入导出半结构化和二进制文件 技术点2 自动复制文件到HDFS 的机制 技术点3 使用Oozie 定期执行数据导入活动 2.2.3 从数据库中拉数据 技术点4 使用MapReduce 将数据导入数据库 技术点5 使用Sqoop 从MySQL 导入数据 2.2.4 HBase 技术点6 HBase 导入HDFS 技术点7 将HBase 作为MapReduce 的数据源 2.3 将数据导出Hadoop 2.3.1 将数据导入本地文件系统 技术点8 自动复制HDFS 中的文件 2.3.2 数据库 技术点9 使用Sqoop 将数据导入MySQL 2.3.3 Hbase 技术点10 将数据从HDFS 导入HBase 技术点11 使用HBase 作为MapReduce 的数据接收器 2.4 本章小结 3 数据序列化――处理文本文件及其他格式的文件 3.1 了解MapReduce 中的输入和输出 3.1.1 数据输入 3.1.2 数据输出 3.2 处理常见的序列化格式 3.2.1 XML . 技术点12 MapReduce 和XML 3.2.2 JSON . 技术点13 MapReduce 和JSON . 3.3 大数据的序列化格式 3.3.1 比较SequenceFiles、Protocol Buffers、Thrift 和 Avro 3.3.2 Sequence File 技术点14 处理SequenceFile 3.3.3 Protocol Buffers 技术点15 整合Protocol Buffers 和MapReduce . 3.3.4 Thrift . 技术点16 使用Thrift 3.3.5 Avro 技术点17 MapReduce 的下一代数据序列化技术 3.4 自定义文件格式 3.4.1 输入输出格式 技术点18 输入和输出格式为CSV 的文件 3.4.2 output committing 的重要性 3.5 本章小结 第3 部分 大数据模式 4 处理大数据的MapReduce 模式 4.1 Join 4.1.1 Repartition Join 技术点19 优化repartition join 4.1.2 Replicated Join 4.1.3 Semi-join 技术点20 实现semi-join 4.1.4 为你的数据挑选最优的合并策略 4.2 排序 4.2.1 二次排序 技术点21 二次排序的实现 4.2.2 整体并行排序 技术点22 通过多个reducer 对key 进行排序 4.3 抽样 技术点23 蓄水池抽样(reservoir 抽样) 4.4 本章小结 5 优化HDFS 处理大数据的技术 5.1 处理小文件 技术点24 使用Avro 存储大量小文件 5.2 通过压缩提高数据存储效率 技术点25 选择合适的压缩解码器 技术点26 在HDFS、MapReduce、Pig 和Hive 中使用数据压缩 技术点27 在MapReduce、Hive 和Pig 中处理可分割的

...展开详情
上传时间:2015-10 大小:2.22MB