numpy官方参考手册.pdf


-
python中必须掌握的库之一 numpy官方参考手册.pdf numpy官方参考手册.pdf
CONTENTS Array objects 1. 1 The N-dimensional array (ndarray) 1.3 Data type objects(dt ype) “· ..110 1.4 Indexing 121 1.5 Standard array subclasses 125 1. 6 Masked arrays 250 1. 7 The Array Interface 433 2 Universal functions(ufunc) 439 2.1 Broadcasting 439 2.2 Output type determination 440 2.3 Use of internal buffers 440 2.4 Error handling 440 2.5 Casting Rules .443 2.6 func 445 2.7 Available ufuncs 452 3 Routines 457 3.1 Array creation routines 457 3.2 Array manipulation routines .488 3.3 Indexing routines “ 522 3.4 Data type routines 3.5 Input and output 55 3.6 Discrete Fourier Transform(numpy. fft) 579 3.7 Linear algebra (numpy linalg) 3.8 Random sampling(numpy. random 627 3.9 Sorting and searching 678 3.10 Logic functions 3.11 Binary operations 707 3. 12 Statistics 715 3. 13 Mathematical functions 735 3. 14 Functional programming 794 3.15 Polynomials 70 3.16 Financial functions 812 3.17 Set routi 820 3.18 Window functions 3. 19 Floating point error handling .836 3.20 Masked array operations 842 3.21N fic help functions 962 3.22 Miscellaneous routines 965 3.23 Test Support(numpy testing) 966 3.24 Assert 967 3.25 Mathematical functions with automatic domain (numpy. emath) 977 3.26 Matrix library(numpy matlib) ..,.,977 3.27 Optionally Scipy-accelerated routines(numpy dual) 977 3.28 Numarray compatibility(numpy numarray) ......978 3.29 Old Numeric compatibility(numpy ol numeric) 978 3.30 C-Types Foreign Function Interface(numpy. ctypeslib) 978 3.31 String operations 979 4 Packaging(numpy distutils) 1015 4.1 Modules in numpy distutils 1015 4.2 Building Installable C libraries 1026 4.3 Conversion of, src fles 1027 5 Numpy C·API 1029 5.1 Python Types and C-Structures ..,..,1029 5.2 System configuration .1043 5.3 Data Type API 1045 5.4 Array API 1047 5.5 FUnc API 1080 5.6 Generalized Universal Function API ..1085 5.7 Numpy core libraries 1087 6 Numpy internals 1091 6. 1 Numpy c Code explanations 1091 6.2 Internal organization of numpy arrays 1098 .3 Multidimensional Array Indexing Order Issues l099 7 Acknowledgements 1101 Bibliography 1103 Python Module Index 1109 Index 1111 Num Py Reference, Release 1.5.1 Release Date November 18.2010 This reference manual details functions, modules, and objects included in Numpy, describing what they are and what they do. For learning how to use NumPy, see also user. CONTENTS NumPy Reference, Release 1.5.1 CONTENTS CHAPTER ONE ARRAY OBJECTS NumPy provides an N-dimensional array type, the ndarray, which describes a collection of"items "of the same type. The items can be indexed using for example n integers All ndarrays are homogenous: every item takes up the same size block of memory, and all blocks are interpreted in exactly the same way. How each item in the array is to be interpreted is specified by a separate data-type object, one of which is associated with every array. In addition to basic types (integers, floats, etc. the data type objects can also represent data structures An item extracted from an array, e. g by indexing, is represented by a python object whose type is one of the array scalar types built in Numpy. The array scalars allow easy manipulation of also more complicated arrangements of data head data-type y apra scalar header ndarray Figure 1.1: Figure Conceptual diagram showing the relationship between the three fundamental objects used to de scribe the data in an array: 1)the ndarray itself, 2)the data-type object that describes the layout of a single fixed-size element of the array, 3)the array-scalar Python object that is returned when a single element of the array is accessed 1.1 The N-dimensional array(ndarray An ndarray is a(usually fixed-size)multidimensional container of items of the same type and size. The number of dimensions and items in an array is defined by its shape, which is a tuple ofn positive integers that specify the sizes of each dimension. The type of items in the array is specified by a separate data-type object (dtype), one of hich is associated with each ndarray As with other container objects in Python, the contents of an ndarray can be accessed and modified by indexing or slicing the array(using, for example, N integers), and via the methods and attributes of the ndarray. Different 3 NumPy Reference, Release 1.5.1 ndarrays can share the same data, so that changes made in one ndarray may be visible in another. That is, an ndarray can be a"view to another ndarray, and the data it is referring to is taken care of by the base "ndarray ndarrays can also be views to memory owned by Python strings or objects implementing the buffer or array interfaces Example A 2-dimensional array of size 2x 3, composed of 4-byte integer elements: >>>x=np. array([1,;2,3],[4,5,6]],np.int32) >>>type(x) d shape (2,3 >>>xdtype (′int32′) The array can be indexed using Python container- like syntax >>>x[1,2] #i.c., the element of x in the *second* row, *third+ For example slicing can produce views of the array ([2,5]) [0]=9 this dlso changes Lhe corresponding element in x >>>y array(「9,51) array([[ [4,5,6]1) 1.1.1 Constructing arrays New arrays can be constructed using the routines detailed in Array creation routines, and also by using the low-level ndarray constructor ndarray An array object represents a multidimensional, homogeneous array of fixed-size items class numpy. ndarray An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type object describes the format of each element in the array(its byte-order, how many bytes it occupies in memory, whether it is an integer, a Hoating point number, or something else, etc. Arrays should be constructed using array, zeros or empty(refer to the See Also section below ) The parameters given here refer to a low-level method (ndarray(.) for instantiating an array For more information, refer to the numpy module and examine thethe methods and attributes of an array Parameters (for the new method; see Notes below) shape: tuple of ints Shape of created array dtype: data-type, optional Any object that can be interpreted as a numpy data type Chapter 1. Array objects Num Py Reference, Release 1.5.1 buffer: object exposing buffer interface, optional Used to fill the array with data offset: int, optional Offset of array data in buffer strides: tuple of ints, optional Strides of data in memory order C’,F}, optional Row-major or coluInn-najor order. See also: array Construct an array. ze。s Create an array each element of which is zero empt Create an array, but leave its allocated memory unchanged (i. e, it contains garbage") atype Create a data-ty Notes There are two modes of creating an array using __new 1. f buffer is None, then only shape, dtype, and order are used 2. If buffer is an object exposing the buffer interface, then all key words are interpreted No_init method is needed because the array is fully initialized after the_ method Examples These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier ways of constructing an ndarray First mode, buffer is No >> rp.ndarray(shape-(2, 2), dtype-float, order-F') array([[-1.13698227e+002 4.25087011e-303] 「2.88528414e-306,3.27025015e-30911) frandor p.ndarray((2,), buff offset=np. int_().itemsize, dtype=int)# offset =I*itemsize, i.e. skip first element array([2, 31) 1.1. The N-dimensional array( ndarray) NumPy Reference, Release 1.5.1 Attributes data atype Create a data type object flags flat imag(val) Return the imaginary part of the elements of the array real(val) Return the real part of the elements of the array size(al, axis] Return the number of elements along a given axis itemsize nbytes Base object for a dictionary for look-up with any alias for an array dtype. ndim(a) Return the number of dimensions of an array. shape(a) Return the shape of an array trides ctypes create and manipulate C data types in Python base class numpy dtype Create a data ty A numpy array is homogeneous, and contains elements described by a dtype object. a dtype object can be constructed from different combinations of fundamental numeric types Parameters 0 Object to be converted to a data type object align: bool, optional Add padding to the fields to match what a C compiler would output for a similar C- struct. Can be True only if obj is a dictionary or a comma-separated string copy: bool, optional Make a new copy of the data-type object. If False, the result may just be a reference uilt-in data-type object Examples Using array-scalar type: >>>np. d=ype(np int16) dtype(in-16′) Record. one field name fl. containing int 6 np.d-y9e([(′1′,np.inL16)]) dtype(「("f1′,<i2′)1) Record, one field named'fI,, in itself containing a record with one field >>>np.d=yoe([("f1′,[(f1′,np.int16)])]) slype([(1′,[(′1′,〃<i2′)])]) Record, two fields: the first field contains an unsigned int, the second an int 32 >>> np. d=ype([(fl, npuint),(f2 , np. int 32)1) dlype([('ll ⊥4′)]) Chapter 1. Array objects

4.14MB
Numpy.pdf 非常详细
2020-09-12numpy是python的一个重要的库,希望写的这份资料能给大家的学习带来帮助,这份资料是在jupyter notebook写的,浏览器打印为pdf格式,包含21个小结,奥里给。
numpy官方参考手册下载_course
2019-11-26numpy官方参考手册 相关下载链接://download.csdn.net/download/slowbull/7608239?utm_source=bbsseo
numpy-pandas-matplotlib-sklearn-官方用户指南中文翻译PDF下载_course
2018-11-29numpy-pandas-matplotlib-sklearn-官方用户指南中文翻译PDF,翻译的很好,排版整洁,图片清晰,代码丰富,例子全面,适合平时用作参考资料。里面有6个文档,只要五个积分,别人
3.30MB
numpy官方参考手册
2018-08-24完整版PDF电子书下载 带索引书签目录高清版。绝对的完整、高清,有目录,带索引书签。1132页 NumPy provides an N-dimensional array type, the ndar
5.20MB
NumPy官方手册(版本1.17).pdf
2019-08-16NumPy官方手册,版本1.17,官方材料,最新,最权威。电子版仅供预览及学习交流使用,下载后请24小时内删除,支持正版,喜欢的请购买正版书籍。
4.81MB
numpy用法官方说明手册
2017-10-21此文档是numpy内容官方手册,但numpy会随着python的升级也在不断提高,所以要不断去numpy官网下载最新内容手册。
19.38MB
scipy和numpy参考手册 pdf
2015-07-26scipy numpy 参考手册 reference guide
863KB
numpy完全详解--jalen.pdf
2019-12-291、NumPy介绍; 2、NumPy安装使用; 3、数组的创建; 3.1、概述; 3.2、基本创建方式; 3.3、其他创建ndarray的方式1:函数和文件; 3.4、其他创建ndarray的方式2:
838KB
numpy使用手册
2019-04-09numpy使用手册
22.7MB
机器学习实战.pdf (高清中文版)
2017-07-02机器学习实战.pdf (高清中文版)
4.56MB
NumPy Beginner's Guide (3rd).pdf 2015第三版
2015-10-29Paperback: 322 pages Publisher: Packt Publishing - ebooks Account; 3 edition (June 30, 2015) Languag
2.28MB
ScipyAndNumpy.pdf 英文原版
2019-08-19Scipy And Numpy
5.49MB
NumPy Cookbook.pdf(Python大数据基础)
2013-07-09本书主要是通过近70个鲜活的使用NumPy进行数据分析的例子来讲述如何使用NumPy进行数据分析和科学计算。numpy是python实现的科学计算包。目前基于python大数据分析基本都是使用NumP
226KB
numpy学习指南教程
2018-08-17Numerical Python David Ascher Paul F. Dubois Konrad Hinsen Jim Hugunin Travis Oliphant
6.65MB
Python数据分析基础教程:NumPy学习指南(第2版).pdf
2017-04-07Python数据分析基础教程:NumPy学习指南(第2版).pdf 个人收集电子书,仅用学习使用,不可用于商业用途,如有版权问题,请联系删除!
44.13MB
Python数据分析基础教程 NumPy学习指南 第2版 pdf
2017-11-19Python数据分析基础教程 NumPy学习指南 第2版 Python数据分析基础教程 NumPy学习指南 第2版
5.36MB
Python数据分析基础教程:NumPy学习指南(第2版)高清完整.pdf版
2017-07-27lvan ldris著; 张驭宇 译;人民邮电出版社;本书是 NumPy 的入门教程, 主要介绍 NumPy 以及相关的 Python 科学计算库, 如 SciPy 和 Matplotlib。本书内容
5.63MB
NumPy Reference.pdf
2019-10-08文档详细介绍了Python NumPy 数据处理库的功能、函数、以及相关示例,极具参考、学习价值。
557KB
numpy 1.14.2官方参考文档
2018-05-16numpy 1.14.2官方参考文档 关于numpy学习和使用的英文说明
-
下载
变化和作为实现动态演化的一流抽象的作用
变化和作为实现动态演化的一流抽象的作用
-
下载
研究软件演化过程建模
研究软件演化过程建模
-
博客
每日程序C语言44-连接两个链表
每日程序C语言44-连接两个链表
-
下载
基于衍射叠栅信号的超精密定位系统
基于衍射叠栅信号的超精密定位系统
-
下载
基于信息分离和邻居惩罚选择的多目标优化
基于信息分离和邻居惩罚选择的多目标优化
-
学院
自动化测试Python3+Selenium3+Unittest
自动化测试Python3+Selenium3+Unittest
-
学院
FastDFS 分布式文件系统部署
FastDFS 分布式文件系统部署
-
下载
集成计数器实验报告.docx
集成计数器实验报告.docx
-
学院
龙芯生态应用开发基础:C语言精要
龙芯生态应用开发基础:C语言精要
-
学院
ELF视频教程
ELF视频教程
-
下载
图形衬底参数对LED发光效率的影响
图形衬底参数对LED发光效率的影响
-
下载
动态多目标优化的基于动态环境演化模型的种群多样性维持策略
动态多目标优化的基于动态环境演化模型的种群多样性维持策略
-
博客
idea代码块红色下划线消除方法、无法查看源码方法
idea代码块红色下划线消除方法、无法查看源码方法
-
博客
i5 11600k参数 i511600k怎么样
i5 11600k参数 i511600k怎么样
-
博客
红黑树删除
红黑树删除
-
学院
Python启蒙到架构师的核心技术精讲课程
Python启蒙到架构师的核心技术精讲课程
-
博客
QUESTION 44-dropping a pluggable database/The PDB must be in mount state.
QUESTION 44-dropping a pluggable database/The PDB must be in mount state.
-
学院
朱老师C++课程第3部分-3.6智能指针与STL查漏补缺
朱老师C++课程第3部分-3.6智能指针与STL查漏补缺
-
博客
laya 坐标指针引用
laya 坐标指针引用
-
博客
202. 快乐数
202. 快乐数
-
博客
渐变纹理
渐变纹理
-
下载
激光海表面反射率的机载实验分析
激光海表面反射率的机载实验分析
-
学院
使用 Linux 平台充当 Router 路由器
使用 Linux 平台充当 Router 路由器
-
下载
企业大数据战略规划实现大数据商业价值
企业大数据战略规划实现大数据商业价值
-
学院
spark大数据分析与实战
spark大数据分析与实战
-
下载
彩灯循环显示控制器实验报告.doc
彩灯循环显示控制器实验报告.doc
-
下载
基于信息分离和邻居惩罚选择的多目标优化
基于信息分离和邻居惩罚选择的多目标优化
-
博客
Java零基础—关于JVM内存管理
Java零基础—关于JVM内存管理
-
学院
SecureCRT 连接 GNS3/Linux 的安全精密工具
SecureCRT 连接 GNS3/Linux 的安全精密工具
-
学院
Galera 高可用 MySQL 集群(PXC v5.6 + Ngin
Galera 高可用 MySQL 集群(PXC v5.6 + Ngin