基于分圆类的最优跳频序列族

所需积分/C币:10 2013-04-02 19:45:55 178KB PDF
收藏 收藏
举报

基于分圆类的最优跳频序列族,有关序列设计方面的论文
C,|(G+ωC|=(i+h,j+ (2) m, n,(i+ me, j+ ne)=(i,j) (3)(i,)=( (4)(,j)=f j=0 0 (5)p=f+1 (h+i, i) 1,k=0; 0 F=(0,1, 1),X={x ipx( t,0 t F Ⅹ Z2p= Z2 Zp k Zo.k Z2 Z (i,j) hZ\{0,p},k{ C k{1}C,讠=0.1 e+2 Ci,1 i e-1 GF(p) X=(x0,x1 supp X(0)={0)Co{1}Ce1{(0.0) ppx(1)={0}C1{1}C suppy(2)={0}C2{1}C1{(1,O0)}, suppy(i)=0 Cr [1 Cu X(2p,e,2f+2)-HS (0)=(0,(),()Z2,(bZ 0.(U0 Hxx(0)=1(0,0)}{(0,)+|{(1.,0)}{(1,))+ (Co+a)+|{0}(C1+c)+ e-1 I(a) Co+I 1+|(C+)C|+|(C+u)C CC=∞,(0)(Co+)+|{}C|{0)(C1+a)+|{}C 0 (0)(Co+a)+|{c)c0. Co. Wp= a (= 2 mode O(mod e Hx,x()2+2(i,i)2+f-1+f-1=2f. (2)ω=1,=0 Hx,x(c0)=|{(0.0)}{(1,0)+|{(1,0)(00)川+2( 0. (3)(=1,(20 H 十 L+ H(X)=2f+2 X=(x0,x1 suppy()={(0,0),(1,O)} suppx (i)=0 Ci[1 Ci X(2p,e+1,2f)-HS ()=(0,),2,(Z, 3 WI ),AcdemicJournalElectronicPublishingHouse.Allrightsreservedhttp://www.cnki.r 2009 Hx(00=|{(00)}{(0,0)+|(1,0){(1,0x)+2(i,)=2f-2 (2) Hx,x(0=|(0,0),(1,0(1,0),(0,0)+2|C:C-|=2+0=2 (3)U=1,(0 x,x(=0 (i-1, 0 H(X= 2f 2=2p,p=ef+ ( 2p, e, 2f+ 2)FHS 2p=2e+2,|f H(X) (2p,e,2f+2)-HS. FHS =(e+ c+3-2/,F=c+1 H(X)=2f-1 (2p,e+1,2f)-HS LempelGreenber ger 3=2p=2ef+2,p C.1 1,GF( F=Z uppx()={(0.0),(1,0)}, suppY4(i)={0)C+k{1}C+k-1,0ie-1. h=2t.0 (2p,e+1,2/)HS hI h2, H(X, Xk)=2f Hx,,x,((U,0(0t-1 0, 0 Hxnx2(0)=|(0.0.、(1,0){(0.0,(.,0)+|c L+ C k1 h Hx,x,(Q)=2+0=2 (2 Hx,x,()=0 (i,k2-k)=2f i=0 (3) 1,(=0 C (4)=1,(b0 Hx,,x,(a (i,h2-k-1)+(i,k2-k+1)=2f H(Xh, Xk)=2f. 0 19932010 Xina academic Journal B lectrovis 2plish2ef +o2=. efigly(serv1+etp: 3w2, ki. r 5 6-9,H(X,Y)2f 9f-1 H(X, Y) 3^-4/+12/2+8-20 ef +4 6ef+4 H(X, Y 2f+2,p e>6-9,f2, (2p,e+1,2f)-HS E={X4k=2,0t 4 26,7,4)-HS, P=13,2p=26,以=6GF(13) C0={1,12}.C={6,7},C2={10,3},C3={8,5},C4={9,4},C5={2,11}. 4.13=ef X1=(153441235200002532144351),X2=(531225013044440310522135), X3=(315003451422224154300513)} H(X1,X1)=4,H(X2,X2)=4,H(X3,X3)=4,H(X1,X2)=4,H(X1,X3)=4,H(X2,X3) =4,M({X1,X2,X3})=4. 参考文献: [1] 2003.24(2):92-102. [2] Peng D, Fan P. Low er bound on the hamming auto and cross correlation of frequence hopping sequences [J IEEE Info T heory, 2004, 50: 2149-2154 I 3] Chu Wensong, Charles J. Colbourn, optimal frequency -ho pping sequence via cyclotomy J]. IEEE Info Theory, 2005.51:1139-1141. 4] R yoh Fuji-Hara, Y ing M iao, M iw ako Mishim a. Optimal frequency -hopping sequence: a com binato rial approach [J]. IEEE Info T heory, 2004, 50: 2408-2420 [5] Gennian Ge, Ry oh Fuji-Hara, Y ing Miao. Further combinatorial constructions for optimal frequency hopping sequences [ J. Journal of Combinat orial Theory A, 2006, 113: 1699-1718 [6] Ding Cunsheng, Marko J Moisio, Jin Y uan. Algebraic constructions of optimal frequency-ho pping sequence [J] IEEE Info T heory,2007,53(7):2606-2610. [7] Ding C, Helleseth T, Martinsen H. New families of binary sequence with optimal three -evel autoco rrelat ion [J] IEEE Info T heory, 2001, 47( 1):428-433 [8 Kim Y S, Jang J, Chung H. New design of low - correlat ion zone sequence sets [J]. IEEE Info Theory, 2006, 52 (10):4607-4616 [9] Lempel A, G reenberger H. Families of sequence w ith o ptimal correlat ion properties [ J]. IEEE Info Theory, 1974, 20(1):90-94 o1994-2010ChinaAcademicJournalElectronicPublishingHouse.Allrightsreseryed.http://wwwycnki.r

...展开详情
试读 5P 基于分圆类的最优跳频序列族
立即下载 低至0.43元/次 身份认证VIP会员低至7折
    一个资源只可评论一次,评论内容不能少于5个字
    sarah0304 其实没有什么内容
    2014-05-08
    回复
    关注 私信 TA的资源
    上传资源赚积分,得勋章
    最新推荐
    基于分圆类的最优跳频序列族 10积分/C币 立即下载
    1/5
    基于分圆类的最优跳频序列族第1页
    基于分圆类的最优跳频序列族第2页

    试读已结束,剩余3页未读...

    10积分/C币 立即下载 >